The short answer is that the displacement is equal tothe area under the curve in the velocity-time graph. The region under the curve in the first 4.0 s is a triangle with height 10.0 m/s and length 4.0 s, so its area - and hence the displacement - is
1/2 • (10.0 m/s) • (4.0 s) = 20.00 m
Another way to derive this: since velocity is linear over the first 4.0 s, that means acceleration is constant. Recall that average velocity is defined as
<em>v</em> (ave) = ∆<em>x</em> / ∆<em>t</em>
and under constant acceleration,
<em>v</em> (ave) = (<em>v</em> (final) + <em>v</em> (initial)) / 2
According to the plot, with ∆<em>t</em> = 4.0 s, we have <em>v</em> (initial) = 0 and <em>v</em> (final) = 10.0 m/s, so
∆<em>x</em> / (4.0 s) = (10.0 m/s) / 2
∆<em>x</em> = ((4.0 s) • (10.0 m/s)) / 2
∆<em>x</em> = 20.00 m
The more twist per foot in a pair of wires, the more resistant the pair will be to cross talk. A cross talk in network planning and design is a disturbance produced by electromagnetic interference beside a circuit or a cable pair. A telecommunication signal interrupts a signal in an adjacent circuit and can source the signals to turn out to be confused and cross over each other.
I think number 1 is incorrect I believe that answer is D. Number 6 I believe would be B. The rest seem to be correct.
If i was feeling harsh today, I'd say the answer to your question is impossible to obtain due to the fact that photons do not emit radiation, photons ARE the radiation emitted. Though for the sake of it, here is the method...
<u>The simple method:
</u>
E=hf
therefore f=e/h
f=(3.611x10^-15) / 6.63x10^-34)
Answer: 5.45x10^18