When a force applied to a breaker bar the torque can be calculated by multiplying the<u> length of the lever</u> by the tangential component of force on the lever.
<h3>What is torque?</h3>
Torque is the <u>rotating equivalent</u> of force in physics and mechanics. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.
Torque is given by the formula :
α = r x F ( bold letters represent vector quantities)
The S.I. unit for torque is : N - m ( Newton - meter)
<h3>How do we define 1 N-m of torque?</h3>
The newton-metre is a torque unit (also known as a moment) in the SI system. The torque produced by a one newton force applied <u>perpendicularly to the end of a one metre long</u> moment arm is known as a newton-metre.
To learn more about torque:
brainly.com/question/14970645
#SPJ4
<h2><em>The Doppler effect is a change in the frequency of sound waves that occurs when the source of the sound waves is moving relative to a stationary listener. As the source of sound waves approaches a listener, the sound waves get closer together, increasing their frequency and the pitch of the sound.</em></h2><h2><em>HOP</em>E IT HELPS </h2><h2>THANK YOU </h2>
None of the choices is an appropriate response.
There's no such thing as the temperature of a molecule. Temperature and
pressure are both outside-world manifestations of the energy the molecules
have. But on the molecular level, what it is is the kinetic energy with which
they're all scurrying around.
When the fuel/air mixture is compressed during the compression stroke,
the temperature is raised to the flash point of the mixture. The work done
during the compression pumps energy into the molecules, their kinetic
energy increases, and they begin scurrying around fast enough so that
when they collide, they're able to stick together, form a new molecule,
and release some of their kinetic energy in the form of heat.
Explanation:
What exactly are u looking for?