Answer is: <span>decomposition.
Balanced chemical reaction: H</span>₂CO₃ → CO₂ + H₂O.
H₂CO₃ is carbonic acid.
CO₂ is carbon (IV) oxide or carbon dioxide.<span>
Chemical decomposition is the separation of
a single chemical compound (in this example </span>carbonic acid<span>) into
its two or more simpler compounds (in this example water and
carbon dioxide).</span>
Answer:
The atomic structure of an atom involves 3 subatomic particles: the proton, neutron, and electron. The proton has a positive charge and is found in the core of the atom, with the neutral neutrons that also have a mass of 1 amu (atomic mass unit) just like the proton. The nucleus is the core of the atom and contains protons and neutrons and is practically the only area with mass. The electron cloud is basically an area surrounding the nucleus and it contains negative charged electrons. Electrons have no mass but are charged with a negative charge that keeps them. I really hope this helps :)
Explanation:
There is a helpful video that actually explains the structure of an atom in a rather fun way in just 2 minutes. It really does help big time and it's kinda funny if you look it up on YT and watch:
WKRP: Venus Explains the Atom
Have a wonderful great day :)
Answer:
H₂S; CO₂; SiH₄
Explanation:
London dispersion forces are larger in molecules that are large and have more atoms or electrons.
A. H₂O or H₂S
H₂S. S is below O in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.
B. CO₂ or CO
CO₂. CO₂ has more atoms. It is also linear, so the molecules can get close to each other and maximize the attractive forces.
C. CH₄ or SiH₄
CH₄. Si is below C in the Periodic Table, so it is the larger atom. Its electrons are more polarizable.
The correct answer is a metal atom forms a cation, and a nonmetal atom forms an anion. This is because metals are less electronegative than nonmetals and will therefore give electrons to nonmetals. Atoms that give up electrons will have a positive charge therefore becoming a cation while atoms that accept electrons will have a negative charge therefore becoming an anion.
Ions that have the same charge can't be attracted to each other since it takes a positive and negative charge to cause attractive forces.
A less electronegative atom will transfer electrons to a more electronegative atom.
A metal (cation) can pull electrons from another metal (not an ion) but that does not form an attractive force between the two metals (You will learn more about this when you go over reduction potentials, redox reactions, and electrochemistry).
I hope this helps. Let me know if anything is unclear.
Remember that a cation will be smaller than its neutral atom, and an anion will be larger than its neutral atom. This would automatically eliminate answer choices A and D.
Also keep in mind that atomic radii decreases from left to right as you move along a periodic table. It also decreases from bottom up.
Atomic radii increases as you move from right to left and as you go from up to down.
As bromine is higher up in the periodic table than Iodine, it would have a smaller radius. Iodine would have a larger radius.
The correct answer is B. Br