Answer:
92.01 g/mol
Explanation:
So first you need to find the empirical formula by the percents. That would be, assuming that you have 100 grams of the the sample, divide each quantity of each element found by its respective molar mass.
30.4 g of N ÷ 14 g/mol N= 2.17 mol of N
69.6 g of O ÷ 16g/mol= 4.35 mol of O
You can establish now the empirical formula.
N2.17O4.35,
but since you can't have a decimal subscript, you divide each subscript by the minimum subscript
NO2
So then you're said that the molecular formula derived from that empirical formula has 2 nitrogen, so you multiply all the subscripts, by 2:
N2O4
-Dinitrogen Tetraoxide
-Nitrogen oxide (IV)
Then all you have to do is find the molecular mass of the compound using the periodic table and what you obtain is the molar mass.
remember: molecular mass is correspondent to molar mass.
The mole ratio of the reaction shows that equal volumes of hydrogen gas will be produced by the two reactions.
<h3>What is the mole ratio of a reaction?</h3>
The mole ratio of a reaction is the ratio in which the reactants and products of a given reaction occur for the reaction to proceed to completion.
The mole ratio of a reaction is also known as the stoichiometry of the reaction.
The equation of the two reactions are given below:


From the equation of the reaction reaction, an equal volume of hydrogen gas will be produced by the two reactions.
Therefore, the mole ratio of the reaction shows that equal volumes of hydrogen gas will be produced by the two reactions.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced equation will be:

Answer:
Na+ ion is smaller than a neutral Na atom in the ion there was one more proton which will attract electron bring it closer to the center making the atomic radius smaller. Therefore making a Na+ ion is smaller than a neutral Na atom Explanation:
yes