Answer:
one with 60g have the more potential
Explanation:
Answer:
at the top
Explanation:
Potential energy is the stored energy, mechanical energy,
or energy possessed by by virtue of the position of an object.an example of potential energy is the energy that a ball possesses by virtue of its sitting at the top of the stairs it being about to roll down the stairs.
Answer: The gravitational
Explanation: The student is pushing the box so u have to have gravitational force so it could move
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4
Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.