Answer:
Force of friction, f = 751.97 N
Explanation:
it is given that,
Mass of the car, m = 1100 kg
It is parked on a 4° incline. We need to find the force of friction keeping the car from sliding down the incline.
From the attached figure, it is clear that the normal and its weight is acting on the car. f is the force of friction such that it balances the x component of its weight i.e.


f = 751.97 N
So, the force of friction on the car is 751.97 N. Hence, this is the required solution.
Answer:
B) boiling point
Explanation:
The movement of the particles causes the shape of the liquid to change. The liquid will flow and fill to the lowest part of the container, in the shape of the container
But the volume does not change. The limited amount of space between the particles means that the liquid has only very limited compressibility.
Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.
There are three main factors that affect wave formation: wind velocity, fetch, and duration.
Waves are most commonly caused by wind. Wind-driven waves, or surface waves, are created by the friction between wind and surface water. As wind blows across the surface of the ocean or a lake, the continual disturbance creates a wave crest.
To solve this, you’d multiply 55 by 4, because he is travelling 55 miles every hour, for four hours, which means 55 miles every hour. The answer would be 220.