I think you're saying that once you start pushing on the cars, you want to be able to stop each one in the same time.
This is sneaky. At first, I thought it must be both 'c' and 'd'. But it's not
kinetic energy, for reasons I'm not ambitious enough to go into.
(And besides, there's no great honor awarded around here for explaining
why any given choice is NOT the answer.)
The answer is momentum.
Momentum is (mass x speed). Change in momentum is (force x time).
No matter the weight (mass) or speed of the car, the one with the greater
momentum is always the one that will require the greater (force x time)
to stop it. If the time is the same for any car, then more momentum
will always require more force.
Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you
A. 1/9
Explanation:
The gravitational force between two objects is given by

where
G is the gravitational constant
m1 and m2 are the two masses
r is the distance between the two masses
From the formula, we see that the magnitude of the force is inversely proportional to the square of the distance: therefore, if the distance is tripled (increased by a factor 3), the magnitude of the force changes by a factor

Earning a <em>bachelor's </em><em>degree will result in you earning approximately 1 million more dollars in your lifetime. </em>
Answer:
Pressure = 5 x 10⁶ Pa
Explanation:
Given:
Height of building = 512 m
Find:
Pressure
Computation:
P2 = P1+dgh
P2 = 1 + (1000)(9.8)(512)
P2 = 51.2 atm
Pressure = 5 x 10⁶ Pa