1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stells [14]
3 years ago
5

The word that identifies the color of an object seen under ordinary daylight is:

Physics
1 answer:
IRINA_888 [86]3 years ago
3 0
The word that identifies the colour of an object seen under ordinary daylight is local colour.
The natural colour of the object, it is best seen on a matte surface because it is not being reflected and therefore distorted. It is the presentation of features of a particular locality.
You might be interested in
A 4.0-m-diameter playground merry-go-round, with a moment of inertia of
HACTEHA [7]

Answer:

7.1 ms⁻¹

Explanation:

d = diameter of merry-go-round = 4 m

r = radius of merry-go-round = \frac{d}{2} =  \frac{4}{2} = 2 m

I = moment of inertia = 500 kgm²

w_{i} = angular velocity of merry-go-round before ryan jumps = 2.0 rad/s

w_{f} = angular velocity of merry-go-round after ryan jumps = 0 rad/s

v = velocity of ryan before jumping onto the merry-go-round

m = mass of ryan = 70 kg

Using conservation of angular momentum

Iw_{i} - m v r = (I + mr^{2})w_{f}

(500)(2.0) - (70) v (2) = (I + mr^{2})(0)

1000 = 140 v

v = 7.1 ms⁻¹

5 0
3 years ago
A car is moving at 19 m/s along a curve on a horizontal plane with radius of curvature 49m.
JulsSmile [24]

Answer:

\mu =0.75

Explanation:

<u>Frictional Force </u>

When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

F_c=m.a_c

The centripetal acceleration a_c is computed as

\displaystyle a_c=\frac{v^2}{r}

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

F_c=m.\frac{v^2}{r}

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

F_r=\mu N

The normal force N is equal to the weight of the car, thus

F_r=\mu .m.g

Equating both forces

\displaystyle \mu .m.g=m.\frac{v^2}{r}

Simplifying

\displaystyle \mu =\frac{v^2}{rg}

Substituting the values

\displaystyle \mu =\frac{19^2}{(49)(9.8)}

\boxed{\mu =0.75}

7 0
3 years ago
The energy an object acquires when it is exposed to a force is called _____ energy
r-ruslan [8.4K]
I'm pretty sure the energy an object acquires when exposed to a force is known was potential energy. 
4 0
3 years ago
1. A block is pulled to the right at constant velocity by a 20N force acting at 30o above the horizontal. If the coefficient of
DiKsa [7]

Answer:

44.6 N

Explanation:

Draw a free body diagram of the block.  There are four forces on the block:

Weight force mg pulling down,

Normal force N pushing up,

Friction force Nμ pushing left,

and applied force F pulling right 30° above horizontal.

Sum of forces in the y direction:

∑F = ma

N + F sin 30° − mg = 0

N = mg − F sin 30°

Sum of forces in the x direction:

∑F = ma

F cos 30° − Nμ = 0

F cos 30° = Nμ

N = F cos 30° / μ

Substitute:

mg − F sin 30° = F cos 30° / μ

mg = F sin 30° + (F cos 30° / μ)

Plug in values:

mg = 20 N sin 30° + (20 N cos 30° / 0.5)

mg = 44.6 N

8 0
2 years ago
Read 2 more answers
A long, straight, horizontal wire carries a left-to-right current of 40 A. If the wire is placed in a uniform magnetic field of
Drupady [299]

Answer:

4.5\times 10^{-5} T

Explanation:

We are given that

Current in wire=40 A

Magnetic field=B_1=3.5\times 10^{-5} T( vertically downward)

We have to find the resultant magnitude of the magnetic field 29 cm above the wire and 29 cm below the wire.

According to Bio-Savart law, the magnetic field exerted by the wire at distance R is given by

B_{wire}=B_2=\frac{\mu_0I}{2\pi R}

We have R=29 cm=\frac{29}{100}=0.29 m

1 m=100 cm

Substitute the values in the given formula

B_2=\frac{4\pi\times 10^{-7}\times 40}{2\times \pi\times 0.29}=\frac{2\times 40\times 10^{-7}}{0.29}=2.76\times 10^{-5} T

The resultant magnetic field is given by

B=\sqrt{B^2_1+B^2_2}

Substitute the values then we get

B=\sqrt{(3.5\times 10^{-5})^2+(2.76\times 10^{-5})^2}

B=4.5\times 10^{-5} T

The resultant magnitude of magnetic field is same above and below the wire as it is at same distance.

The resultant magnitude of the magnetic field 29 cm below the wire=4.5\times 10^{-5} T

Hence, the resultant magnitude of the magnetic field 29 cm above  the wire=4.5\times 10^{-5} T

7 0
3 years ago
Other questions:
  • Can an object form two or more shadows at the same how
    15·2 answers
  • A cart is pulled by a force of 250 N at an angle of 35° above the horizontal. The cart accelerates at 1.4 m/s2. The free-body di
    7·1 answer
  • A pronghorn antelope has been observed to run with a top speed of 97 km/h. Suppose an antelope runs 1.5 km with an average speed
    13·1 answer
  • why was it intresting that democritus came up with atomism given that he was a materialist philosopher
    9·1 answer
  • What is the tension in the cord after the system is released from rest? Both masses (A and B) are 10-kg.
    9·1 answer
  • Among three bases, x−, y−, and z−, the strongest one is y−, and the weakest one is z−. rank their conjugate acids, hx, hy, and h
    14·1 answer
  • Explain how Rutherfords' gold foil experiment explains how this experiment confirms the nuclear model of the atom and the idea t
    15·1 answer
  • Which term describes a gap in the geologic record that occurs when sedimentary rocks cover an eroded surface?
    5·2 answers
  • if the coefficient of linear expansion of a metal is 2.05× 10^-6 k^-1 what will be its new length if 50cm metal went through a t
    6·1 answer
  • What is the mechanical advantage of this system?<br> А<br> 2<br> B<br> 3<br> C<br> 4
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!