Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

For a circular aperture, the first minima (n=1) as an angular separation from the peak of the central maxima given by
Sinθ = 1.22λ / d
Where,
d is the aperture or pupil diameter
d = 4.69 mm = 4.69 × 10^-3m
λ is the wavelength
λ = 545 nm = 545 × 10^-9 m
Then,
Sinθ = 1.22λ / d
Sinθ = 1.22 × 545 × 10^-9 / 4.69 × 10^-3
Sinθ = 1.418 × 10^-4 rad
Then, the head light sources have the same angular separation θ from the eye as the image have inside the eye.
For the headlight
Sinθ ≈ light separation / distantce for the eye
Light separation is give as x = 0.659 m
And let the distance of the eye be D
Then,
Sinθ = x / D
Make D subject of formula
D = x / Sinθ
D = 0.695 / 1.418 × 10^-4
D = 4902.316m
To km, 1km = 1000m
D ≈ 4.9 km
Answer:
The total energy is 
Explanation:
From the question we are told that
The Poynting vector (energy flux ) is 
The length of the rectangle is 
The width of the rectangle is
The time taken is 
The total electromagnetic energy falls on the area is mathematically represented as

Where A is the area of the rectangle which is mathematically represented as

substituting values


substituting values

