Answer:
Reducing molecules.
Explanation:
NAD (Nicotinamide adenine dinucleotide) is the important molecule used by the living organisms for the generation of ATP. NADH is used almost in every biochemical cycle like glycolysis, kreb cycle and elelctron transport chain.
The NADH molecule is used as the reducing molecule in the biosynthesis of the different reaction. The NADH molecule reduces its hydrogen ions and also carry electrons for the synthesis of molecules. The NADH molecule is also used in the shuttle system as well.
Thus, the answer is reducing molecules.
<h2>~<u>Solution</u> :-</h2>
- Here, to find the atomic mass of element, we must;
We know that,
- 4.6 x $ \sf{10^{22}}$ atoms of an element weigh 13.8g.
Thus,
The atoms of $ \sf{ 6.02 \times 10^{13}}$ will weigh;


- Hence, the molar mass (atomic mass) will be <u>180.6 g.</u>
Glycolysis--The breakdown of a glucose molecule into two three-carbon pieces called pyruvate. You will notice that very little ATP is produced in this step and no oxygen is required. ... This step is also where other molecules besides glucose may be fed into the cell respiration<span> process, especially lipids.</span>
The anode is the electrode where the oxidation occurs.
Cathode is the electrode where the reducction occurs.
Equations:
Mn(2+) + 2e- ---> Mn(s) Eo = - 1.18 V
2Fe(3+) + 2e- ----> 2 Fe(2+) 2Eo = + 1.54 V
The electrons flow from the electrode with the lower Eo to the electrode with the higher Eo yielding to a positive voltage.
Eo = 1.54 V - (- 1.18) = 1.54 + 1.18 = 2.72
Answer: 2.72 V
It would have a charge of 4+