Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
Answer:
the difference is tyat eruptions of less gassy and more gassy is that the less gassy doesnt retain as much gas as the more gassy one and thus the eruption of the less gassy is less damage to the more gassy
So..... I believe this is a Convergent boundary and mountains..
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).