Answer:
Explanation:
Volume of silver cube = 2.42³ = 14.17 cm³
mass of silver cube = volume x density
= 14.17 x 10.49 = 148.64 gm
Volume of gold cube = 2.75³ = 20.8 cm³
mass of gold cube = 20.8 x 19.3 = 401.44 gm
specific heat of silver and gold are .24 and .129 J /g°C
mass of 112 mL water = 112 g
Heat absorbed = heat lost = mass x specific heat x temperature fall or rise
Heat lost by metals
= 148.64 x .24 x ( 85.4 -T) + 401.44 x .129 x ( 85.4 - T )
= (35.67 + 51.78 ) x ( 85.4 - T )
87.45 x ( 85.4 - T )
= 7468.23 - 87.45 T
Heat gained by water
= 112 x 1 x ( T - 20.5 )
= 112 T - 2296
Heat lost = heat gained
7468.23 - 87.45 T = 112 T - 2296
199.45 T = 9764.23
T = 48.95° C
Answer:
Increasing the concentration of the reagents makes the collision between two molecules of the reagents more likely, thereby increasing the probability that the reaction will occur between these reagents.
As for the relationship between concentration and volume, density also comes into play, a higher volume, lower molarity and also lower concentration.
The pressure when increasing could generate a closer approach between the particles, therefore generating an increase in the reaction speed.
Pressure and volume are related but inversely proportional, therefore if the volume increases the pressure decreases and so on.
the reaction rate increases as the contact surface area increases. This is due to the fact that more solid particles are exposed and can be reached by reactant molecules.
A perfect reaction where the collision is promoted and the reaction speed advances is with the presence of a solvent, with an increase in pressure and a decrease in volume, with an increase in the exposure of the surface, with the presence of a catalyst, with increasing temperature and with increasing entrance
Explanation:
The reaction rate is defined as the amount of substance that is transformed into a certain reaction per unit of volume and time. For example, the oxidation of iron under atmospheric conditions is a slow reaction that can take many years but over time it is oxidized sooner or later by the oxygenation of its surface layer, but the combustion of butane in a fire is a reaction that happens in fractions of seconds, giving rise to an exothermic reaction with products such as CO2 and H2O