Answer: false
Explanation:
f this helps typically an element wont have a 2 next to it, to see if something is an element or compound check for the element on the periodic table and see if the structure or name matches the one given to you on the question. for example here it is Co2 on the periodic table it's simply written as Co
co2 or carbon dioxide is a compound not an element, you can even check this on the periodic table
The water well begin to freeze and turn into soild. why? because the temperature of the the freezer is getting the water bottle cold so when that cold temperature hits that that bottle which has liquid in it so you should know that when liquid is into cold air it well so be soild so when you put the water bottle in the freezer it will be soild.
and also remember gas - liquid - soild gas change to liquid by hot air and liuid change to soild by clod air
hoped i helped
Balanced chemical equation:
2 C2H2 + 5 O2 = 4 CO2 + 2 H2O
2 moles C2H2 ---------------- 5 moles O2
moles C2H2 ------------------ 84 moles O2
moles C2H2 = 84 * 2 / 5
molesC2H2 = 168 / 5 => 33.6 moles of C2H2
Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.
40% solution of glucose is where the solution contains, by weight, 40% glucose and 60% water.
Therefore, if the total weight of the solution is 250 g,
mass of the glucose (C6H12O6) = 250 g * 40% = 100 g
mass of water (H2O) = 250 g * 60% = 150 g
Mass of water can also be calculated by subtracting the weight of glucose from the total weight of the solution:
mass of water = 250g-100g = 150g.