The correct answer is rock cycle
The work is 90 as 5 times 18
Given:
P1 = 400 kPa
T1 = 110 K
T2 = 235K
Required:
P2
Solution:
Apply Gay-Lussac’s
law where P/T = constant
P1/T1 = P2/T2
P2 = T2P1/T1
P2 = (235K)(400kPa)
/ (110K)
P2 = 855 kPa
Answer:
Sound wave X amplitude is greater than 'A' and its frequency is lesser than
'f'
Explanation:
The pitch of a sound is dictated by the frequency of the sound wave, while the loudness is dictated by the amplitude.
A high pitch sound corresponds to a high frequency and a low pitch sound corresponds to a low frequency.
The larger the amplitude of the waves, the louder the sound and vice-versa.
From the question,
Sound wave W has amplitude ‘A' and frequency 'f' and
Sound wave X is louder and lower in pitch than sound wave W.
Since sound wave X is louder, this means its amplitude is greater than 'A'.
Also, since sound wave X is lower in pitch, this means its frequency is lesser than 'f'.
Answer:
<em>F=8.87 N</em>
Explanation:
<u>Coulomb's Law
</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge in coulomb
d= The distance between the objects in meters
Object 1 has a charge of

Object 2 has a charge of

They are separated by a distance of
d = 0.099 m
Calculate the force:

F=8.87 N