To answer that question, we don't care what the highest and lowest
levels of the wave are, or how far apart they are. We only need to be
able to identify the highest point on the wave, and keep track of how
often those pass by us.
You said it takes 4 seconds for a complete wave to pass by.
Through the sheer power of intellect, I'm able to take that information
and calculate that 1/4 of the wave passes by in 1 second.
There's your frequency . . . 1/4 per second, or 0.25 Hz.
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) minus (speed at the beginning)
change in speed = (zero) minus (28 m/s) = -28 m/s
Acceleration = (-28 m/s) / (13 sec)
Acceleration = -2.15 m/s²
Answer:
Somatic motor neurons originate in the central nervous system, project their axons to skeletal muscles (such as the muscles of the limbs, abdominal, and intercostal muscles), which are involved in locomotion.
Explanation:
Muscles move on commands from the brain. Single nerve cells in the spinal cord, called motor neurons, are the only way the brain connects to muscles. When a motor neuron inside the spinal cord fires, an impulse goes out from it to the muscles on a long, very thin extension of that single cell called an axon.
ripples on the surface of water.
vibrations in a guitar string.
a Mexican wave in a sports stadium.
electromagnetic waves – eg light waves, microwaves, radio waves.
seismic S-waves.
Answer:

Explanation:
<u>Density
</u>
The density of a substance is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:

We have a cube-shaped piece of copper of 4 cm of side length. The volume of the piece is:

Surprisingly, no other magnitude is required, thus the answer is:
