Answer:
Roughly C100 H140 N3 O
Explanation:
Gilsonite is a bituminous product that resembles shiny black obsidian.
It contains more than 100 elements.
Its mass composition varies but is approximately 84 % C, 10 % H, 3 % N, and 1 % O.
Its empirical formula is roughly C100 H140 N3 O.
Answer:
the number of neutrons in the nucleus
Explanation:
The mass number 205 is the total number of protons and neutrons in the nucleus. Lead has 82 protons, so a mass number of 205 indicates a nucleus with 123 neutrons.
Similarly, the mass number 208 indicates a lead nucleus with 126 neutrons.
The difference in atomic structure is the difference in the number of neutrons in the nucleus.
Answer:
The organs present inside the chest are :
1. The lungs
2. The heart
Explanation:
The chest cavity is also called as the thoracic cavity. It is the second largest hollow space of the body.In the bottom , it is enclosed by the diaphragm.
This cavity actually contain three space each round with mesothelium , pleural cavity and precardial cavity.
This contain the lungs , the tracheobronchial tree , the heart , the blood vessels which transport the blood between the heart and the lungs.
It also contain the esophagus .
Esophagus is the path through which the food passes from the mouth to the stomach.
Answer:
36.2 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 8.6 atm
- Initial temperature of the gas (T₁): 38°C
- Final pressure of the gas (P₂): 1.0 atm (standard pressure)
- Final temperature of the gas (T₂): ?
Step 2: Convert T₁ to Kelvin
We will use the following expression.
K = °C +273.15
K = 38 °C +273.15 = 311 K
Step 3: Calculate T₂
We will use Gay Lussac's law.
P₁/T₁ = P₂/T₂
T₂ = P₂ × T₁/P₁
T₂ = 1.0 atm × 311 K/8.6 atm = 36.2 K
Answer:
C.) 2
Explanation:
The pH equation is:
pH = -log[H⁺]
In this equation, [H⁺] is the molarity of the acid. In this case, the acid is HCl. Molarity can be found using the equation:
Molarity (M) = moles / volume (L)
Since you were given moles and volume, you can find the molarity of HCl.
Molarity = moles / volume
Molarity = 0.01 moles / 1.00 L
Molarity = 0.01 M
Now, you can plug the molarity of the acid into the pH equation.
pH = -log[H⁺]
pH = -log[0.01]
pH = 2