Answer:
the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
Explanation:
Following Newton's second law:
net force = mass * acceleration = weight/gravity * acceleration
then denoting 1 and 2 as the first and second lift
F₁ - w= w/g *a₁
F₂ -w = w/g *a₂ = w/g * 2.07a
dividing both equations
(F₂- w)/(F₁ -w)= 2.07
(F₂- w) = 2.07 * (F₁ -w)
1.07*w = 2.07*F₁ - F₂
w = (2.07*F₁ - F₂ )/ 1.07
replacing values
w = (2.07*61.1 N - 70.9 N )/ 1.07 = 51.94 N
then the weight of the ball is w = 51.94 N ( mass = 5.3 kg)
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
Answer
Explanation:
As the three resistors are connected in series, the expression to be used for the
calculation of RT equivalent resistance
is:
RT = R1 + R2 + R3
We replace the data of the statement in the previous expression and it remains:
5 10 15 RT + R1 + R2 + R3 + +
We perform the mathematical operations that lead us to the result we are looking for:
RT - 30Ω
Answer:
Conduction occurs more readily in solids and liquids, where the particles are closer to together, than in gases, where particles are further apart. ... As these molecules collide, thermal energy is transferred via conduction to the rest of the pan.
Explanation:
Metals have tightly packed atoms which can easily pass on their kinetic energy and also have free moving electrons.