The total number of revolutions made by the wheel
is closest to is 28.2 revolutions. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer:
12 m
Explanation:
The object is in uniformly accelerated motion, so the distance covered can be found using the following suvat equation:

where
s is the distance
u is the initial velocity
t is the time
a is the acceleration
For this problem,

and
u = 0, since we are considering the first second of motion
So, substituting t = 1 s, we find

Answer:
part (a)
towards north east direction.
part (b) s = 46.60 m
Explanation:
Given,
- velocity of the river due to east =

- velocity of the boat due to the north =

part (a)
River is flowing due to east and the boat is moving in the north, therefore both the velocities are perpendicular to each other and,
Hence the resultant velocity i,e, the velocity of the boat relative to the shore is in the North east direction. velocities are the vector quantities, Hence the resultant velocity is the vector addition of these two velocities and the angle between both the velocities are 
Let 'v' be the velocity of the boat relative to the shore.

Let
be the angle of the velocity of the boat relative to the shore with the horizontal axis.
Direction of the velocity of the boat relative to the shore.
part (b)
- Width of the shore = w = 300m
total distance traveled in the north direction by the boat is equal to the product of the velocity of the boat in north direction and total time taken
Let 't' be the total time taken by the boat to cross the width of the river.
Therefore the total distance traveled in the direction of downstream by the boat is equal to the product of the total time taken and the velocity of the river
Answer:
Index of expansion: 4.93
Δu = -340.8 kJ/kg
q = 232.2 kJ/kg
Explanation:
The index of expansion is the relationship of pressures:
pi/pf
The ideal gas equation:
p1*v1/T1 = p2*v2/T2
p2 = p1*v1*T2/(T2*v2)
500 C = 773 K
20 C = 293 K
p2 = 35*0.1*773/(293*1.3) = 7.1 bar
The index of expansion then is 35/7.1 = 4.93
The variation of specific internal energy is:
Δu = Cv * Δt
Δu = 0.71 * (20 - 500) = -340.8 kJ/kg
The first law of thermodynamics
q = l + Δu
The work will be the expansion work
l = p2*v2 - p1*v1
35 bar = 3500000 Pa
7.1 bar = 710000 Pa
q = p2*v2 - p1*v1 + Δu
q = 710000*1.3 - 3500000*0.1 - 340800 = 232200 J/kg = 232.2 kJ/kg
Explanation:
To determine your total daily calorie needs, multiply your BMR by the appropriate activity factor, as follows: If you are sedentary (little or no exercise) : Calorie-Calculation = BMR x 1.2. If you are lightly active (light exercise/sports 1-3 days/week) : Calorie-Calculation = BMR x 1.375.
<em><u>HAPPY TO HELP</u></em>