Answer: The acceleration of the object is 0.67m/s^2 west.
Explanation: Here we are given the initial velocity and final velocity as well as the time taken. Acceleration is the change in velocity per unit time, thus the equation becomes.
a=dv/t
a=vf-vi/t
a=-2.1-4.7/3.9
a= 0.66m/s^2 west
Answer:
the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Explanation:
This problem can be solved using the kinematics relations, let's start by finding the final velocity of the acceleration period
v² = v₀² + 2 a₁ x
indicate that the initial velocity is zero
v² = 2 a₁ x
let's calculate
v =
v = 143.666 m / s
now for the second interval let's find the distance it takes to stop
v₂² = v² - 2 a₂ x₂
in this part the final velocity is zero (v₂ = 0)
0 = v² - 2 a₂ x₂
x₂ = v² / 2a₂
let's calculate
x₂ =
x₂ = 573 m
as the stopping distance is greater than the free length of the track, the vehicle leaves the track before it can brake
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
So, the time needed before you hear the splash is approximately <u>2.06 s</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. This question uses two principles, namely the time for an object to fall freely and the time for sound to propagate through air. When moving in free fall, the time required can be calculated by the following equation:



With the following condition :
- t = interval of the time (s)
- h = height or any other displacement at vertical line (m)
- g = acceleration of the gravity (m/s²)
Meanwhile, for sound propagation (without sound reflection), time propagates is the same as the quotient of distance by time. Or it can be formulated by :

With the following condition :
- t = interval of the time (s)
- s = shift or displacement (m)
- v = velocity (m/s)
<h3>Problem Solving</h3>
We know that :
- h = height or any other displacement at vertical line = 19.6 m
- g = acceleration of the gravity = 9.8 m/s²
- v = velocity = 343 m/s
What was asked :
= ... s
Step by step :
- Find the time when the object falls freely until it hits the water. Save value as





- Find the time when the sound propagate through air. Save value as




- Find the total time




<h3>Conclusion</h3>
So, the time needed before you hear the splash is approximately 2.06 s.
The letter i is used to signify that a number is an imaginary number. It stand for the square root of negative one.