Answer:
The distance between the camera and the rock is 836.6 cm
Explanation:
A right triangle is formed where the hypotenuse (h) is the distance between the rock and the camera. One of the leg (l) is the distance between the camera and the surface. The angle between the hypotenuse and this leg is α = 90° - 13.69° = 76.31°. By definition:
cos α = adjacent/hypotenuse
cos(76.31) = 198.0/h
h = 198.0/cos(76.31)
h = 836.6 cm
Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1
It’s A.Longitudinal. Tell me if I’m right
a. 4.52 m/s south
Velocity is a vector, whose magnitude is defined as the ratio between the displacement of the object and the time taken for the displacement to occur:

where
d is the displacement
t is the time
Velocity is a vector, so it also has a direction, which corresponds to that of the displacement.
For the ball in this problem,
d = 9.5 m south
t = 2.1 s
Substituting, we find:

and the directiion is the same as the displacement (south).
b. 4.52 m/s north
For this part, we must keep in mind that the speed is the magnitude of the velocity; however, speed is a scalar, so it does not have a direction.
Here we are told that the tennis ball travels at constant speed, so on its way back from Liam to Katie the ball's velocity is still the same as before, therefore

However, this time the direction is opposite to before, since the ball is travelling in the opposite direction.
Therefore, the ball's velocity when Liam returns Katie's service is
4.52 m/s north
Refer to the diagram shown.
There are twelve 5-minute divisions.
Each 5-minute division is equal to 360°/12 = 30°.
By convention, angles are measured counterclockwise from the positive x-axis.
The angular position of the minute hand at 2:55 is
θ = 90° + 30° = 120°
Because 360° = 2π radians, therefore
θ = (120/360)*2π = (2π)/3 radians = 2.0944 radians
Answer: (2π)/3 radians ofr 2.0944 radians.