1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natasha2012 [34]
3 years ago
6

At a certain location, wind is blowing steadily at 9 m/s. Determine the mechanical energy of air per unit mass and the power gen

eration potential of a wind turbine with 80-m-diameter blades at that location. Also, determine the actual electric power generation, assuming an overall efficiency of 30 percent. Take the air density to be 1.25 kg/m3.
Physics
1 answer:
Misha Larkins [42]3 years ago
6 0

Answer:

  1. The specific mechanical energy of the air in the specific location is 40.5 J/kg.
  2. The power generation potential of the wind turbine at such place is of 2290 kW
  3. The actual electric power generation is 687 kW

Explanation:

  1. The mechanical energy of the air per unit mass is the specific kinetic energy of the air that is calculated using: \frac{1}{2} V^2 where V is the velocity of the air.
  2. The specific kinetic energy would be: \frac{1}{2}(9\frac{m}{s})^2=40.5\frac{m^2}{s^2}=40.5\frac{m^2 }{s^2}\frac{kg}{kg}=40.5\frac{N*m }{kg}=40.5\frac{J}{kg}.
  3. The power generation of the wind turbine would be obtained from the product of the mechanical energy of the air times the mass flow that moves the turbine.
  4. To calculate mass flow it is required first to calculate the volumetric flow. To calculate the volumetric flow the next expression would be: \frac{V\pi D_{blade}^2}{4} =\frac{9\frac{m}{s}\pi(80m)^2}{4} =45238.9\frac{m^3}{s}
  5. Then the mass flow is obtain from the volumetric flow times the density of the air: m_{flow}=1.25\frac{kg}{m^3}45238.9\frac{m^3}{s}=56548.7\frac{kg}{s}
  6. Then, the Power generation potential is: 40.5\frac{J}{kg} 56548.7\frac{kg}{s} =2290221W=2290.2kW
  7. The actual electric power generation is calculated using the definition of efficiency:\eta=\frac{E_P}{E_I}}, where η is the efficiency, E_P is the energy actually produced and, E_I is the energy input. Then solving for the energy produced: E_P=\eta*E_I=0.30*2290kW=687kW
You might be interested in
How does the generator effect work?​
notsponge [240]

Answer:

The changing magnetic field within the loops of wire creates an electric field that pushes the electrons in the wire through the lamp, briefly lighting it

Explanation:

The GE demonstrates that a voltage, and hence a current, can be generated by plunging a coil of wire into and out of a strong magnet.

7 0
3 years ago
The minimum stopping distance of a car moving at 20.5 mi/h is 11.6 m. Under the same conditions (so that the maximum braking for
pshichka [43]

Answer:

d = 69 .57 meter

Explanation:

First case

Speed of car ( v )  = 20.5 mi/h  = 9.164  M/S

distance ( d ) = 11.6 meter                                       ( m = mass of the car )

Work done = 0.5 m v²  = 0.5 * 9.164² * m J  = 41.99 m J

Force = ( workdone /distance ) = ( 41.99 m / 11.6 )   =  3.619 m N

Second case

v = 50.2 mi/h = 22.44135 m/s

d = ?

Work done = 0.5 * 22.44² * m J = 251.7768 * m J

Since the braking force remains the same .

3.619 m = ( 251.7768 m / d )

d = 69 .57 meter

7 0
3 years ago
Compare the foot of mollusks with the tube feet of echinoderms.
stira [4]

Mollusks live in fresh water, in marine environment, but also on land.

<span>Echinoderms live only in water. This is the reason why they have developed different systems for moving. Mollusks have only singular muskullus foot for walking and Echinoderms have tube feet which they use for moving, as well for collecting and transporting food to their mouth. </span>



4 0
3 years ago
What is the equation for momentum
Marina CMI [18]

Answer:

p=mv

Explanation:

i looked it up.

5 0
3 years ago
Read 2 more answers
Student pushes a 50 N block across the floor for a distance of 15 m how much work was done to move the block
Talja [164]

Answer:

750 J

Explanation:

We have a student that pushes a 50N block  across the floor for a distance of 15m. The question is asking how much work was done to move the block.

To solve this, we must know that we are looking for a certain thing called joules. And to get the answer, we must follow the formula of W = FS

F being the force and S being the distance.

W = FS

W = (50)(15)

W = 750

Therefore, 750 joules is our answer.

7 0
3 years ago
Other questions:
  • Calculate the magnitude of the electric field at one corner of a square 2.42 m on a side if the other three corners are occupied
    15·1 answer
  • A transformer has a 240 V primary and a 60 V secondary. With a 5 ohm load connected, what is the primary current?
    13·1 answer
  • The heating element of a water heater in an apartment building has a maximum power output of 37 kW. Four residents of the buildi
    13·1 answer
  • A horizontal metal bar oriented east-west drops straight down in a location where the earth's magnetic field is due north. as a
    12·1 answer
  • Please help me with this question
    10·1 answer
  • PLEASE IM TIMED! GIVE BRAINLIEST OF U ANSWER THESE 2 QUESTION!!
    8·2 answers
  • Witch SI units are commonly used to measure mass and weight
    6·1 answer
  • Which equation correctly relates mechanical energy, thermal energy, and total
    15·1 answer
  • The _________ is the difference between two times
    13·1 answer
  • An object of mass m attached to a spring of force constant k oscillates with simple harmonic motion. The maximum displacement fr
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!