1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
8

A rocket has landed on planet x, which has half the radius of earth. An astronaut onboard the rocket weighs twice as much on pla

net x as on earth. If the escape velocity for the rocket taking off from earth is u0 , then its escape velocity on planet x is
(a) 2u0
(b) 2u0
(c) u0
(d) u0 2
(e) u0 4
Physics
1 answer:
Nastasia [14]3 years ago
4 0

Answer:

Option (c) u0

Explanation:

The escape velocity has a formula as:

V = √(2gR)

Where V is the escape velocity,

g is the acceleration due to gravity

R is the radius of the earth.

Now, from the question, we were told that the escape velocity for the rocket taking off from earth is u0 i.e

V(earth) = u0

V(earth) = √(2gR)

u0 = √(2gR) => For the earth

Now, let us calculate the escape velocity for the rocket taking off from planet x. This is illustrated below below:

g(planet x) = 2g (earth) => since the weight of the astronaut is twice as much on planet x as on earth

R(planet x) = 1/2 R(earth) => planet x has half the radius of earth

V(planet x) =?

Applying the formula V = √(2gR), the escape velocity on planet x is obtained as follow:

V(planet x) = √(2g(x) x R(x))

V(planet x) = √(2 x 2g x 1/2R)

V(planet x) = √(2 x g x R)

V(planet x) = √(2gR)

The expression obtained for the escape velocity on planet x i.e V(planet x) = √(2gR), is exactly the same as that obtained for the earth i.e V(earth) = √(2gR)

Therefore,

V(planet x) = V(earth) = √(2gR)

But from the question, V(earth) is u0

Therefore,

V(planet x) = V(earth) = √(2gR) = u0

So, the escape velocity on planet x is u0

You might be interested in
An object has a kinetic energy of 14 J and a mass of 17 kg , how fast is the object moving?
lisabon 2012 [21]
v ^{2} = Joules ÷ (0.5×Kilograms)

14J ÷ 8.5 = 1.64705882

Remember, 1.64705882 = v², so we need to find the square root.

The square root of 1.64705882 is 1.283377894464448

Hope this helps! 
6 0
3 years ago
Read 2 more answers
John is carrying a shovelful of snow. The center of mass of the 3.00 kg of snow he is holding is 15.0 cm from the end of the sho
Andru [333]

Answer:

James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down

Explanation:

Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards

so here we can say

Upwards force = downwards Force + weight of snow

while if we find the other force which is acting downwards

then for that force we can say that net torque must be balanced

so here we have

F_{down} L_1 = W_{snow} L_2

so here we have

F_{down} = \frac{L_2}{L_1} (W_{snow})

so here we can say that upward force by which we push up is always more than the downwards force

8 0
3 years ago
Help awnser need experts​
pishuonlain [190]

12. The answer would be C. 1.50 s. This is because if you divide 60 by 40, you will get 1.5.

13. For this one I'm not sure, but what I can tell you is that the heavier something is the faster it will sink, the lighter it is, it will float.

5 0
3 years ago
A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 790.5 meters from the wall and the sound of h
tester [92]

Answer:

4.80 seconds

Explanation:

The velocity of sound is obtained from;

V= 2d/t

Where;

V= velocity of sound = 329.2 ms-1

d= distance from the wall = 790.5 m

t= time = the unknown

t= 2d/V

t= 2 × 790.5/ 329.2

t= 4.80 seconds

7 0
3 years ago
A block of a plastic material floats in water with 42.9% of its volume under water. What is the density of the block in kg/m3?
adell [148]

To solve this problem we will apply the principle of buoyancy of Archimedes and the relationship given between density, mass and volume.

By balancing forces, the force of the weight must be counteracted by the buoyancy force, therefore

\sum F = 0

F_b -W = 0

F_b = W

F_b = mg

Here,

m = mass

g =Gravitational energy

The buoyancy force corresponds to that exerted by water, while the mass given there is that of the object, therefore

\rho_w V_{displaced} g = mg

Remember the expression for which you can determine the relationship between mass, volume and density, in which

\rho = \frac{m}{V} \rightarrow m = V\rho

In this case the density would be that of the object, replacing

\rho_w V_{displaced} g = V\rho g

Since the displaced volume of water is 0.429 we will have to

\rho_w (0.429V) = V \rho

0.429\rho_w= \rho

The density of water under normal conditions is 1000kg / m ^ 3, so

0.429(1000) = \rho

\rho = 429kg/m^3

The density of the object is 429kg / m ^ 3

7 0
2 years ago
Other questions:
  • Charges q, q, and – q are placed on the x-axis at x = 0, x = 4 m, and x = 6 m, respectively. At which of the following points do
    6·1 answer
  • PLEASE NEED HELP What is the net force acting on the race car in the picture: Question 1 options: 10 N to the right 3 N to the l
    13·1 answer
  • What is the horizontal component of the force on the ball after it leaves the throwers hands
    7·1 answer
  • Two different substances, Substance A and Substance B, are in direct contact with each other and are at different temperatures.
    6·2 answers
  • Which action can be explained by physics ?
    9·2 answers
  • How is energy transformed from one form to another?
    8·1 answer
  • How to be good at rocket league
    13·2 answers
  • Why would the bulb not light?
    7·1 answer
  • What are the advantages of strength exercises?
    12·1 answer
  • Which of the following is the main difference between speed and velosity? A) speed is measured over time B) velocity has both sp
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!