Answer:

Explanation:
A 6.0-cm-diameter parallel-plate capacitor has a 0.46 mm gap.
What is the displacement current in the capacitor if the potential difference across the capacitor is increasing at 500,000V/s?
Let given is,
The diameter of a parallel plate capacitor is 6 cm or 0.06 m
Separation between plates, d = 0.046 mm
The potential difference across the capacitor is increasing at 500,000 V/s
We need to find the displacement current in the capacitor. Capacitance for parallel plate capacitor is given by :
, r is radius
Let I is the displacement current. It is given by :

Here,
is rate of increasing potential difference
So

So, the value of displacement current is
.
Answer:
This is false becuase different object weigh different
Thank you!
Explanation:
Answer:
10°C
Explanation:
To convert °F to °C, we use the formula:
°C = (°F - 32) * ( 5/9)
So, to convert 50°F to the equivalent in °C, we can proceed as follows:
°C = ( 50 - 32 ) * (5/9)
°C = ( 18 ) * (5/9), which is, approximately,
°C = 9.999999999... ≈ 10 (5/9 ≈0.555555...)
So, 50°F is equivalent to 10°C.
Answer:
Explanation:
For the first case , the expression for electrostatic force can be given by the following .
F = K x 8Q x 2Q / r² where k is a constant .
F = K 16 Q² / r²
When they touch , some charge is neutralized . Net charge remaining
= 8Q - 2 Q = 6 Q
Charge on each sphere = 6Q/2 = 3 Q .
Force between them
F₁ = k 3Q x 3 Q / r² = k 9 Q² / r²
F₁ / F = 9 / 16
F₁ = 9 F / 16 .
Correct position spring hold it