d =2.55.68m and t = 11.36s
In my opinion
Answer:
The sound travelled 516 meters before bouncing off a cliff.
Explanation:
The sound is an example of mechanical wave, which means that it needs a medium to propagate itself at constant speed. The time needed to hear the echo is equal to twice the height of the canyon divided by the velocity of sound. In addition, the speed of sound through the air at a temperature of 20 ºC is approximately 344 meters per second. Then, the height of the canyon can be derived from the following kinematic formula:
(1)
Where:
- Height, measured in meters.
- Velocity of sound, measured in meters per second.
- Time, measured in seconds.
If we know that
and
, then the height of the canyon is:



The sound travelled 516 meters before bouncing off a cliff.
Answer:
Please check the attached file for the diagram
Explanation:
The velocity of the of the rowboat
through the river is the resultant velocity. It is obtained taking a vector sum of the velocity in still water and the velocity of the river.
There are several ways to take this vector sum, but the question makes it simple for us to use Pythagoras's theorem because the East and North directions are perpendicular to each other.
Hence;

