Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m
Answer:
Momentum = 1.534 kgm/s
Explanation:
Using the equations of motion, we can obtain the velocity of the ball as it hits the ground.
g = 9.8 m/s²
y = 12 m
u = initial velocity = 0 m/s, since the ball was released from rest
v = final velocity befor the ball hits the ground.
v² = u² + 2ay
v² = 0 + 2×9.8×12 = 235.2
v = 15.34 m/s
The momentum at any point is given as mass × velocity at that point
Mass = 100 g = 0.1 kg, velocity = 15.34 m/s
Momentum = 0.1 × 15.34 = 1.534 kgm/s
The farthest major planet from the sun is Neptune
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>