Answer:
a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.
Explanation:
The heating curve is a curve that represents temperature (T) in the y-axis vs. added heat (Q) in the x-axis. The slope is T/Q = 1/C, where C is the heat capacity. Then, the higher the slope, the lower the heat capacity. For a constant mass, it can also represent the specific heat capacity (c).
Heats of vaporization and fusion cannot be calculated from these sections of the heating curve.
<em>Which statement below explains that?</em>
<em>a. The specific heat capacity of the gaseous ethanol is less than the specific heat capacity of liquid ethanol.</em> YES.
<em>b. The specific heat capacity of the gaseous ethanol is greater than the specific heat capacity of liquid ethanol.</em> NO.
<em>c. The heat of vaporization of ethanol is less than the heat of fusion of ethanol.</em> NO.
<em>d. The heat of vaporization of ethanol is greater than the heat of fusion of ethanol.</em> NO.
LaChatelier's Principle
LaChatelier's Principle is a principle stating that if a constraint (such as a change in pressure, temperature, or concentration of a reactant) is applied to a system in equilibrium, the equilibrium will shift so as to tend to counteract the effect of the constraint.
Hello!
The
dissociation reaction of HNO₃ is the following:
HNO₃ → H⁺ + NO₃⁻This is a strong acid, so the concentration of HNO₃ would be the same as the concentration of H⁺. The formula for pH is the following:
![pH=-log([H_3O^{+}])=-log(0,75M)=0,12](https://tex.z-dn.net/?f=pH%3D-log%28%5BH_3O%5E%7B%2B%7D%5D%29%3D-log%280%2C75M%29%3D0%2C12)
So, the pH would be
0,12Have a nice day!
Answer:
The least substituted product (anti-Markovnikov)
Explanation:
The ROOR is used in the addition reaction of HBr to an organic substance (an alkene for example).
In normal conditions (with no ROOR) the adition of the halogen will be performed in the most substituted C (following the rule of Markovnikov that says that the stability increases with the more substituted is the C).
But in presence of ROOR, the reaction takes other mechanism (free radicals), and the product in this case is the one with the Br added in the least substituted C.
The effusion rate is 1.125 cm/sec for ammonia.
How to find effusion rate ?
Effusion rate (r1) HCl = 43.2 cm/min
Molar mass (m2) NH3 =17.04g/mole
Molar mass (m1) HCl =36.46g/mole
- Substitute the molar masses of the gases into Graham's law and solve for the ratio.
firstly convert 43.2 cm/min into cm/sec i.e., 0.72 cm/sec
Then,
0.72/r2 =√17.04/36.46
r2= 1.125 cm/sec
Hence, the rate of diffusion of ammonia is 1.125 times faster than the rate of diffusion of hydrogen chloride.
learn more about effusion here:
brainly.com/question/2097955
#SPJ4