Answer:
oh 50 points! how did you do it??!?!?!?! I see up to 8 points only
Answer:
The frequency heard by the motorist is 4313.2 Hz.
Explanation:
let f1 be the frequency emited by the police car and f2 be the frequency heard by the motorist, let v1 be the speed of the police car and v2 be the speed of the motorist and v = 343 m/s be the speed of sound.
because the police car is moving towards the motorist at a higher speed, then the motorist will hear a increasing frequency and according to Dopper effect, that frequency is given by:
f1 = [(v + v2/(v - v1))]×(f2)
= [( 343 + 30)/(343 - 36)]×(3550)
= 4313.2 Hz
Therefore, the frequency heard by the motorist is 4313.2 Hz.
Answer:
1) x rays
Explanation:
Honestly Gamma rays has the Highest frequency, but in your options, gamma rays is not among, so x rays has the highest frequency among your options.
by Manshow
The frequency of a wave is the number of wave cycles per second. this quantity is given the symbol ν and has units of s^–1 or hertz.
What is a wave ?
A wave is a dynamic disturbance of one or more quantities that propagates through time. When waves oscillate frequently around an equilibrium value at a certain frequency, they are said to be periodic.
What is a wave cycle ?
The wavelength is the measured distance in meters between two waves' peaks or troughs, which is referred to as a wave cycle. It's crucial to remember that the distance from peak to peak equals the distance from trough to trough. The length of time it takes a wave to complete one cycle is known as the wave's period.
Learn more about waves here:-
brainly.com/question/3639648
#SPJ4
Answer:
27.1m/s
Explanation:
Given parameters:
Height of the building = 30m
Initial velocity = 12m/s
Unknown:
Final velocity = ?
Solution:
We apply one of the kinematics equation to solve this problem:
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 12² + (2 x 9.8 x 30)
v = 27.1m/s