Given : Density of Bromine = 3.12 g/mL
Formula : Density = Mass / Volume
Part A :
Given Volume = 125 mL
Density = Mass / Volume
So, Mass = Density x Volume
= 3.12 x 125
= 390 grams
Part B :
Given mass = 85.0 gm
Density = Mass / Volume
So, Volume = Mass / Density
= 85 / 3.12
= 27.24 mL
Hello!
To solve this problem we'll use the
Henderson-Hasselbach equation, but first we need the vale for the pKa of Benzoic acid, which is pKa= -log(Ka)=
4,19Now, we apply the equation as follows:
![pH=pKa + log ( \frac{[C_6H_5COONa]}{[C_6H_5COOH]} )=4,19+log( \frac{0,15M}{0,25M} )=3,97](https://tex.z-dn.net/?f=pH%3DpKa%20%2B%20log%20%28%20%5Cfrac%7B%5BC_6H_5COONa%5D%7D%7B%5BC_6H_5COOH%5D%7D%20%29%3D4%2C19%2Blog%28%20%5Cfrac%7B0%2C15M%7D%7B0%2C25M%7D%20%29%3D3%2C97%20)
So, the pH of this solution of Sodium Benzoate and Benzoic Acid is
3,97Have a nice day!
Answer:
37.5 g NaCl
Explanation:
Step 1: Given data
- Concentration of NaCl: 15.0% m/m
- Mass of the solution: 250.0 g
Step 2: Calculate how many grams of NaCl are in 250.0 g of solution
The concentration of NaCl is 15.0% by mass, that is, there are 15.0 g of NaCl every 100 g of solution.
250.0 g Solution × 15.0 g NaCl/100 g Solution = 37.5 g NaCl
Answer:
1) H2O
Explanation:
this is because there is a bond between two nonmetals, Hydrogen and oxygen, so the bond is covalent. all the other are bonds between a metal and nonmetal so it is ionic.