Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)
From the given balanced equation we have find out the amount (in gm) of Ag formed from 5.50 gm of Ag₂O.
2Ag₂O(s) → 4Ag (s) + O₂ (g)
We know, molecular mass of Ag₂O= 231.7 g/mol, and atomic mass of Ag= 107.8 g/mol. Given, mass of Ag₂O=5.50 gm. Number moles of Ag₂O=
= 0.0237 moles.
From the balanced chemical reaction we get 2 (two) moles of Ag₂O produces 4 (four) moles of Ag. So, 0.0237 moles of Ag₂O produces
moles=0.0474 moles of Ag= 0.0474 X 107.8 g of Ag=5.11g Ag.
Therefore, 5.50 g Ag₂O produces 5.11 g of Ag as per the given balanced chemical reaction.
requires a medium to propagate
Explanation:
due to radiation z a dispersion of light ray into different multiple
Blood is pumped throughout the body by your heart. Your heart is the main organ responsible for blood circulation.