Answer:
a) The work done is 10.0777 kJ
b) The water's change in internal energy is -122.1973 kJ
Explanation:
Given data:
1 mol of liquid water
T₁ = temperature = 100.9°C
P = pressure = 1 atm
Endothermic reaction
T₂ = temperature = 100°C
1 mol of water vapor
VL = volume of liquid water = 18.8 mL = 0.0188 L
VG = volume of water vapor = 30.62 L
3.25 moles of liquid water vaporizes
Q = heat added to the system = -40.7 kJ
Questions: a) Calculate the work done on or by the system, W = ?
b) Calculate the water's change in internal energy, ΔU = ?
Heat for 3.25 moles:

The work done:

The change in internal energy:

Answer:
alpha particles
Explanation:
alpha particles the least penetrating but potentially most damaging and gamma rays the most penetrating. A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay.
sana po makatulong
#keeponlearning
#Godbless
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
Answer:
The mass of a system does not change during a chemical reaction
Explanation:
Correct Answers