Answer:
Fewer hydrogen bonds form between alcohol molecules. As a result, less heat is needed for alcohol molecules to break away from solution and enter the air.
Explanation:
Hydrogen bonding is a kind of intermolecular interaction that occurs when hydrogen is bonded to a highly electronegative atom.
Both water and alcohols exhibit hydrogen bonding. However, alcohols exhibit fewer hydrogen bonds than water.
As a result of this, the temperature of evaporation is much higher for water than for alcohol because hydrogen bonds hold water molecules more closely than alcohol molecules are held.
The energy released from 1 gram of uranium is more than 1 million times greater than the energy released from 3 grams of coal is True.
<u>Explanation:</u>
Nuclear Fission is the process in which splitting of a nucleus takes place that releases free neutrons and lighter nuclei. The fission of heavy elements like "Uranium is highly exothermic" and releases "200 million eV" compared to the energy that is released by burning coal which gives a few eV.
In the given example, it is obvious that the energy released from 1 gram of uranium is more than that of the energy released from 3 grams of coal because the amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only
part of the original nuclei is converted to energy.
The reaction for the combustion of methane can be expressed as follows.
CH4 + 2O2 --> CO2 + 2H2O
We solve first for the amount of carbon dioxide in moles by dividing the given volume by 22.4L which is the volume of 1 mole of gas at STP.
moles of CO2 = (5.6 L) / (22.4 L/1 mole)
moles of CO2 = 0.25 moles
Then, we can see that every mole of carbon dioxide will need 1 mole of methane
moles methane = (0.25 moles CO2) x (1 moles O2/1 mole CO2)
= 0.25 moles CH4
Then, multiply this by the molar mass of methane which is 16 g/mole. Thus, the answer is 4 grams methane.