Answer:
all light waves can be described in terms of their speed, frequency and wavelength
Explanation:
Hope it helps u.....
Answer: Concentration of N₂ is 4.8.
M.
Explanation:
is a constant of equilibrium and it is dependent of the concentrations of the reactants and the products of a balanced reaction. For
N2(g) + 2 O2(g) ⇄ 2 NO2(g)
= ![\frac{[NO2]^{2} }{[N2][O2]^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO2%5D%5E%7B2%7D%20%7D%7B%5BN2%5D%5BO2%5D%5E%7B2%7D%20%7D)
From the question concentration of NO2 is twice of O2:
[NO2] = 2[O2]
Substituting this into
:
= ![\frac{[2O2]^{2} }{[N2][O2]^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2O2%5D%5E%7B2%7D%20%7D%7B%5BN2%5D%5BO2%5D%5E%7B2%7D%20%7D)
8.3.
= ![\frac{4O2^{2} }{[N2].O2^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B4O2%5E%7B2%7D%20%7D%7B%5BN2%5D.O2%5E%7B2%7D%20%7D)
[N2] = 
[N2] = 
[N2] = 4.8.
The concentration of N2 in the equilibrium is [N2] = 4.8.
M.
Answer:
Option c: Possible electron energy states are quantized within an atom.
Explanation:
The Bohr's Model of the hydrogen atom consisted of the movements of the electrons around the positively-charged nucleus in circular orbits that have a certain energy state. The energy of that orbit is given by:

<em>Where:</em>
E(n): is the energy of an electron in a particular orbit
R: is the Rydberg constant
h: is the Plank constant
c: is the speed of light
n: is a positive integer which corresponds to the number of the orbit
The ground state energy of a electron in the hydrogen atom is equal to -13,6 eV.
Bohr's Model aims to propose that the electron is restrictedly to occupy a certain region in the atom.
Therefore, the conclusion of Bohr after observing emission spectrum lines is that "possible electron energy states are quantized within an atom", so the correct option is c.
I hope it helps you!
Answer:
Size and Temperature or E & B
Explanation: