Unfortunately, you failed to include the table 1 from which the molar heat capacity of aluminum could have been obtained. However, as a general rule, the heat needed to raise the temperature of a certain substance by certain degrees is calculated through the equation,
H = mcpdT
where H is heat, m is mass, cp is specific heat capacity, and dT is change in temperature. From a reliable source, cp for aluminum is equal to 0.215 cal/g°C. Substituting this to the equation,
H = (260.5 g)(0.215 cal/g°C)(125°C - 0)
H = 7000.94 cal
I believe it's answer #3. Logically, at least.
You can test #1 through trial and error.
You can experiment #2 also through trial and error.
You cannot test #3 through trial and error, because that would be catastrophic.
You can test #4 through a survey and individual study and data collection.
Answer:
Enzyme.
Explanation:
Enzymes act as a catalyst in all reaction but remain unchanged by the process.
Answer:
See attachment.
Explanation:
Mono-substituted cyclohexanes are more stable with their substituents in an equatorial position. However, with poly-substituted cyclohexanes, the situation is more complex since the steric effects of all substituents have to be taken into account. In this case, you can see that <u>the interconversion is shifted towards the conformation in the bottom because there is less tension between the substituents</u>.