Answer:
400 cm³ of ammonia, NH₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 cm³ of H₂ reacted to produce 2 cm³ of NH₃.
Finally, we shall determine the maximum volume of ammonia, NH₃ produced from the reaction. This can be obtained as illustrated below:
From the balanced equation above,
3 cm³ of H₂ reacted to produce 2 cm³ of NH₃.
Therefore, 600 cm³ of H₂ will react to produce = (600 × 2)/3 = 400 cm³ of NH₃.
Thus, 400 cm³ of ammonia, NH₃ were obtained from the reaction.
Given :
0.00072 M solution of
at
.
To Find :
The concentration of
and pOH .
Solution :
1 mole of
gives 2 moles of
ions .
So , 0.00072 M mole of
gives :
![[OH^-]=2 \times 0.00072\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D2%20%5Ctimes%200.00072%5C%20M)
![[OH^-]=0.00144\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.00144%5C%20M)
![[OH^-]=1.44\times 10^{-3}\ M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.44%5Ctimes%2010%5E%7B-3%7D%5C%20M)
Now , pOH is given by :
![pOH=-log[OH^-]\\\\pOH=-log[1.44\times 10^{-3}]\\\\pOH=2.84](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D%5C%5C%5C%5CpOH%3D-log%5B1.44%5Ctimes%2010%5E%7B-3%7D%5D%5C%5C%5C%5CpOH%3D2.84)
Hence , this is the required solution .
I hate to tell you this but this isnt tinder hunny
Answer:
A. Water
Explanation:
The formula for photosynthesis is carbon dioxide plus water which (with sunlight and chlorophyll) gets converted into glucose + oxygen, energy for the plant.
Without water, photosynthesis is unable to properly take place and plants are unable to produce the energy needed for them to continue maintaining life.