Answer:
0.375 L
Explanation:
We know that at neutralization, the number of mol of acid must equal the number of equivalents of base.
This is a reaction 1:1 acid to base:
HClO₄ + NaOH ⇒ NaClO₄ + H₂O
We re given the moles of the base indirectly since we know the volume and molarity. From there we can calculate the volume of HClO₄.
Moles NaOH = 0.115 L x 0.244 M = 0.115 L x 0.244 mol/L =0.028 mol
Thus we require 0.028 mol of HClO₄ in the pechloric acid solution:
Molarity = # moles / V ⇒ V = # moles / M
V = 0.028 mol / 0.0748 mol/L = 0.375 L
Note that this problem can be solved in just one step since
M(HClO₄) x V(HClO₄) = M(NaOH) x V(NaOH) ⇒
V(HClO₄) = M(NaOH) x V(NaOH) / M(HClO₄)
Answer:

Explanation:
B.

BALANCED. 7C, 16H, and 22O on each side of equation.
A.

NOT BALANCED. 7C on left and 6C on right.
C.

NOT BALANCED. 16H on left and 10H on right.
D.

NOT BALANCED. 7C on left and 14C on right.
Hello!
Percentage error = (true value - measured value)/true value x 100%
Percentage error = (27.7-27.0)/27.7 x100% = 25.3%
Answer:
0.2598 M
Explanation:
Molarity is mol/L, so we have to convert the grams to moles and the mL to L. To convert between grams and moles you need the molar mass of the compound, which is 36.46g/mol.



Round to the lowest number of significant figures = 0.2598 M
This can be, for example, halogensubstituted hydrocarbons.
CCl₄, C₂F₆.
Or halides halocarboxylic acids, and other compounds.
O
II
Cl₃C-Cl