1. Two parallel normal faults form.
4. The hanging wall on the left slides down relative to the footwall.
5. The hanging wall on the right slides down relative to the footwall.
Answer:
4Cr + 3O2 —> 2Cr2O3
Explanation:
Information from the question include:
Chromium + oxygen -> chromium(III) oxide
From the word equation given above, the equation can be written as follow:
Cr + O2 —> Cr2O3
The equation can be balance by doing the following:
There are 2 atoms of O on the left side and 3 atoms on the right side. It can be balance by putting 2 in front of Cr2O3 and 3 in front of O2 as shown below:
Cr + 3O2 —> 2Cr2O3
Now, we have 4 atoms of Cr on the right side and 1 atom on the left. It can be balance by putting 4 in front of Cr as shown below:
4Cr + 3O2 —> 2Cr2O3
Now the equation is balanced
Answer:
I'm very sure it's thermal energy.
Explanation:
The statement “Only the “Conclusion” section discusses whether the original hypothesis was supported, and both sections suggest further research”, best describes the difference between analysis and conclusion.
Answer: Option 4
<u>Explanation:
</u>
In research, we do experiments and derive the results. Then, those results were analyzed by us. In this analysis part, we compare our results with the related results published elsewhere. Also, we correlate the similarities and point out the differences between our analysis and other reported results.
In conclusion part, we have to check hypothesis or it supported. And, we summarise our analysis and figure out the further research need to be done on that to improvise our research. So, the final statement is the correct option which best describes the difference between analysis and conclusion.
Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0