Answer:
3.01×10²³ atoms of calcium
Explanation:
number of moles = number of atoms/Avogadro's constant
n = N/NA
N = n×NA = 0.500 mol×6.02×10²³ mol^-1
N = 3.01×10²³ atoms of calcium
Answer:
C.) Argon
Explanation:
This is because ionisation energy increases as we move from left to right in a period. Argon presents in the right most column and Argon is a novel gas and has 8 electrons in outermost orbital. So, it is highly stable. I hope I helped! ^-^
Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
Answer:
SOMEONE ANSWER THIS PLEASE
Explanation:
PLEASE
Answer:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
Explanation:
Chemical equation:
Al + ZnCl₂ → Zn + AlCl₃
Balanced Chemical equation:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
This is the example of single displacement reaction. Al displace the zinc and form aluminium chloride and zinc metal.
There are two Al three zinc and six chlorine atoms on both side of equation so it is correctly balanced.
Thus it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.