Answer:
High
Explanation:
When the unknown compound contains an impurity that is insoluble in cyclohexane, the solute will not dissolve in the solvent (cyclohexane) completely. ∆T of the solution would be smaller than it is supposed to be, when compared to a compound without such insoluble impurity. Molecular weight determination won't be accurate because the molecular weight obtained will be higher as a result of the fact that the mass of the solute would include the actual solute that is changing the temperature and the excess mass of the impurity.
1. Physical
2. D
3. It’s either A or D but I think it’s A
4. C
5. A
6. D
7. A
8. B
9. I couldn’t see the question for it
10. A
11. D
12. D
13. B
Answer:
Explanation:
It is possible to answer this question knowing Hess's law that says you can sum half-reactions enthalpy cahnge to obtain enthalpy change of the total reaction. Using the reactions:
<em>(1) </em>2NO(g) → N₂(g)+O₂(g) ΔH = -180,6 kJ
<em>(2) </em>N₂(g) + O₂(g) + Cl₂(g) → 2NOCl(g) ΔH = +103,4 kJ
The reverse reactions of (1) and (2) are:
<u>N₂(g)+O₂(g)</u> → 2NO(g) ΔH = +180,6 kJ
2NOCl(g) → <u>N₂(g) + O₂(g)</u> + Cl₂(g) ΔH = -103,4 kJ
The sum of these reactions is:
2NOCl(g) → 2NO(g) + Cl₂(g) ΔH = +180,6 kJ -103,4 kJ = <em>77,2 kJ</em>
<em />
I hope it helps!
Answer:
3.0x10⁻²M
Explanation:
Silver sulfate, Ag₂SO₄, has a product constant solubility equilbrium of:
Ag₂SO₄(s) ⇄ 2Ag⁺ + SO₄²⁻
When an excess of silver sulfate is added, some Ag₂SO₄ will react producing Ag⁺ and SO₄²⁻ until reach the equilbrium determined for the formula:
ksp = 1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
Assuming the Ag₂SO₄ that react until reach equilibrium is X, we can replace in Ksp expression:
1.4x10⁻⁵ = [Ag⁺]² [SO₄²⁻]
1.4x10⁻⁵ = [2X]² [X]
1.4x10⁻⁵ = 4X³
3.5x10⁻⁶ = X³
0.015 = X
As [Ag⁺] is 2X:
[Ag⁺] = 0.030 = 3.0x10⁻²M
The answer is:
<h3>3.0x10⁻²M</h3>