The answer to your question is A.
Answer:
The number of copper atoms 12.405 ×10²³ atoms.
The number of silver atoms 13.13 ×10²³ atoms.
Beaker B have large number of atoms.
Explanation:
Given data:
In beaker A
Number of moles of copper = 2.06 mol
Number of atoms of copper = ?
In beaker B
Mass of silver = 222 g
Number of atoms of silver = ?
Solution:
For beaker A.
we will solve this problem by using Avogadro number.
The number 6.022×10²³ is called Avogadro number and it is the number of atoms in one mole of substance.
While we have to find the copper atoms in 2.06 moles.
So,
63.546 g = 1 mole = 6.022×10²³ atoms
For 2.06 moles.
2.06 × 6.022×10²³ atoms
The number of copper atoms 12.405 ×10²³ atoms.
For beaker B:
107.87 g = 1 mole = 6.022×10²³ atoms
For 222 g
222 g / 101.87 g/mol = 2.18 moles
2.18 mol × 6.022×10²³ atoms = 13.13 ×10²³ atoms
Answer:
Endothermic
Explanation:
The temperature of the water decreased.
The water lost heat.
The heat must have gone into getting the KNO₃ into solution.
So, the dissolving of KNO₃ in water is endothermic.
Answer:
A. 2C + H₂ ⟶ CH₄
Explanation:
A. 2C + H₂ ⟶ CH₄
UNBALANCED. 2C on the left and 1C on the right
B. 2Al₂O₃ ⟶ 4Al + 3O₂
Balanced. Same number of each type of atom on each side.
C. 2H₂O₂ ⟶ 2H₂O + O₂
Balanced. Same number of each type of atom on each side.
D. 2C₂H₆ + 7O₂ ⟶ 4CO₂ + 6H₂O
Balanced. Same number of each type of atom on each side.
Answer: Do want the experiment done or help of the experiment