Answer:
See attached picture.
Explanation:
See attached picture for explanation.
Answer:
N = 38546.82 rpm
Explanation:
= 150 mm

= 17671.45 
= 250 mm

= 49087.78 
The centrifugal force acting on the flywheel is fiven by
F = M (
-
) x
------------(1)
Here F = ( -UTS x
+ UCS x
)
Since density, 





∴
-
= 50 mm
∴ F = 
F = 33618968.38 N --------(2)
Now comparing (1) and (2)

∴ ω = 4036.61
We know


∴ N = 38546.82 rpm
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes