1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seropon [69]
2 years ago
7

If a fuel line is routed through a compartment parallel with an electrical wire bundle, the fuel line should be installed ______

_____________________ (above or below) the wire bundle.
Engineering
1 answer:
Gala2k [10]2 years ago
8 0
Below so if it was to leak or bust it wouldn’t be much of a harm to anyone
You might be interested in
Click this link to view O*NET’s Wages and Employment section for Film and Video Editors.
vova2212 [387]

Answer:

much faster than average

Explanation:

did it on edge (2022-2032)

6 0
2 years ago
Answer ppeeeeeaaaalll
Bad White [126]

Answer:

what

Explanation:

is this an exam or an test or what is it

3 0
2 years ago
I want to solve the question
DedPeter [7]

Answer:

yes.

Explanation:

5 0
3 years ago
How high a building could fire hoses effectively spray from the ground? Fire hose pressures are around 1 MPa. (It is also said t
Mrac [35]

Answer:

z_{2} = 91.640\,m

Explanation:

The phenomenon can be modelled after the Bernoulli's Principle, in which the sum of heads related to pressure and kinetic energy on ground level is equal to the head related to gravity.

\frac{P_{1}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}= z_{2}+\frac{P_{2}}{\rho\cdot g}

The velocity of water delivered by the fire hose is:

v_{1} = \frac{(300\,\frac{gal}{min} )\cdot(\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot (0.3\,m)^{2}}

v_{1} = 0.267\,\frac{m}{s}

The maximum height is cleared in the Bernoulli's equation:

z_{2}= \frac{P_{1}-P_{2}}{\rho\cdot g} + \frac{v_{1}^{2}}{2\cdot g}

z_{2}= \frac{1\times 10^{6}\,Pa-101.325\times 10^{3}\,Pa}{(1000\,\frac{kg}{m^{3}} )\cdot(9.807\,\frac{m}{s^{2}} )} + \frac{(0.267\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )}

z_{2} = 91.640\,m

7 0
3 years ago
Time management is a learned behavior.<br> True<br> False
larisa [96]

Answer:

true

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Does the location of a millimeter change the voltage or current of the circuit?
    7·1 answer
  • Chapter 15 – Fasteners: Determine the tensile load capacity of a 5/16 – 18 UNC thread and a 5/16 – 24 UNF thread made of the sam
    8·2 answers
  • 100 kg of refrigerant-134a at 200 kPa iscontained in a piston-cylinder device whose volume is 12.322 m3. The piston is now moved
    14·1 answer
  • What type of intersection is this?
    8·1 answer
  • Item110pointseBook HintPrintReferences Check my work Check My Work button is now disabled5Item 1Item 1 10 pointsAn ideal Diesel
    10·1 answer
  • Describe with an example how corroded structures can lead to environment pollution? ​
    13·1 answer
  • When could you use the engineering design process in your own life?
    9·1 answer
  • How can you do this 5.2.4: Rating?
    5·1 answer
  • There are three homes being built, each with an identical deck on the back. Each deck is comprised of two separate areas. One ar
    7·1 answer
  • What is the importance of the causal link<br> in work accidents?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!