When a solid turns to gas it is called sublimation, and when a gas turns into a liquid it is called deposition
The NaOH will be used What titrant to titrate the 0. 02 m hcl phenol red solution.
Acid-base titrations may be the most typical titrations, although there are numerous more forms as well. Take a look at this illustration where sodium hydroxide is used to titrate a sample of hydrochloric acid (HCl) (NaOH). The titrant (NaOH), which is added gradually throughout the duration of the titration, has been added to the unknown solution.
Titrants are solutions with known concentrations that are added to solutions whose concentrations must be determined. The solution for whom the concentration needs to be determined is known as a titrant as well as analyte.
Therefore, the NaOH will be used as a titrant to titrate the 0. 02 m hcl phenol red solution.
To know more about titrant
brainly.com/question/21504465
#SPJ4
Answer: from the Zn anode to the Cu cathode
Justification:
1) The reaction given is: Zn(s) + Cu₂⁺ (aq) -> Zn²⁺ (aq) +Cu(s)
2) From that, you can see the Zn(s) is losing electrons, since it is being oxidized (from 0 to 2⁺), while Cu²⁺, is gaining electrons, since it is being reduced (from 2⁺ to 0).
3) Then, you can already tell that electrons go from Zn to Cu.
4) The plate where oxidation occurs is called anode, and the plate where reduction occus is called cathode.
So you get that the electrons flow from the anode (Zn) to the cathode (Cu).
Always oxidation occurs at the anode, and reduction occurs at the cathode.
Answer:
11.39
Explanation:
Given that:


Given that:
Mass = 1.805 g
Molar mass = 82.0343 g/mol
The formula for the calculation of moles is shown below:

Thus,


Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)


Concentration = 0.4 M
Consider the ICE take for the dissociation of the base as:
B + H₂O ⇄ BH⁺ + OH⁻
At t=0 0.4 - -
At t =equilibrium (0.4-x) x x
The expression for dissociation constant is:
![K_{b}=\frac {\left [ BH^{+} \right ]\left [ {OH}^- \right ]}{[B]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5Cleft%20%5B%20BH%5E%7B%2B%7D%20%5Cright%20%5D%5Cleft%20%5B%20%7BOH%7D%5E-%20%5Cright%20%5D%7D%7B%5BB%5D%7D)

x is very small, so (0.4 - x) ≅ 0.4
Solving for x, we get:
x = 2.4606×10⁻³ M
pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61
<u>pH = 14 - pOH = 14 - 2.61 = 11.39</u>