<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.
Economy - If there isn't a sustainable economy, it won't be able to support many people so instead they are limited.
Weather- If a place is too warm or too cold it can affect the population. The weather may be seen as harsh.
Government- If people are not agreeing with the government and are against, many will leave. They won't be able to withstand it.
Overpopulation- If there is too many people, they may restrict how many babies you can have and how many people can live there. China, a co
Answer:
the answer is C + H2O # CO + H2.
Answer:
(a) oxygen
(b) 154g (to 3sf)
(c) 79.9% (to 3sf)
Explanation:
mass (g) = moles × Mr/Ar
note: eqn means chemical equation
(a)
moles of P = 84.1 ÷ 30.973 = 2.7152 moles
moles of O2 = 85÷2(16) = 2.65625 moles
Assuming all the moles of P is used up,
moles of O2 / moles of phosphorus = 5/4 (according to balanced chemical eqn)
moles of O2 required = 5/4 × 2.7152moles = 3.394 moles (more than supplied which is 2.65625moles)
therefore there is insufficient moles of O2 and the limiting reactant is oxygen.
(b)
moles of P2O5 produced
= 2/5 (according to eqn) × 2.7152
= 1.08608moles
mass of P2O5 produced
= 1.08608 × [ 2(30.973) + 5(16) ]
= 154.164g
= approx. 154g to 3 sig. fig.
(c)
% yield = actual/theoretical yield × 100%
= 123/154 × 100%
= 79.870%
= approx. 79.9% (to 3sf)
A bimolecular reaction is always a second-order reaction, but a second-order reaction is not always a bimolecular reaction.
The most important thing to take note of is that molecularity of a reaction is a concept applicable to only elementary reactions, meaning non-complex. In a way, elementary reactions are basic and achieved in one step. Complex reactions involve intermediate steps before achieving the desired reaction.
Molecularity is equal to the sum of the coefficients of the reactants, so two reactants give a second-order bimolecular reaction. However, second-order reactions can involve more than two reactants especially in complex reactions.