Answer:
it is the one below that. NO, because it debt net the octet rule
If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
<h3>How to calculate volume?</h3>
The volume of a gas at STP can be calculated using the direct proportion method.
According to this question, 50.75 g of a gas occupies 10.0 L at STP, then 129.3g of the same gas will occupy the following:
= 129.3 × 10/50.75
= 25.48L
Therefore, if 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy 25.48 L at STP.
Learn more about volume at: brainly.com/question/12357202
#SPJ1
Pretty sure it's b but not an definitely
Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K
B, turns red litmus paper to blue