Answer:
The correct answer is B. Since the two metals have the same mass, but the specific heat capacity of iron is much greater than that of gold, the final temperature of the two metals will be closer to 498 K than to 298 K
Explanation:
Iron is hotter and gold is colder, therefore, according to laws of thermodynamics, iron will lose heat to gold until they are at the same temperature.
The specific heat capacity of iron(0.449) is over three times that of gold(0.128). Since masses are equal, this means that each time iron's temperature drops by one degree, the energy released it releases makes gold's temperature increase by more than 3 degrees. So gold's temperature will be climbing much faster than iron's is falling. Meaning they will meet closer to the initial temperature of iron than that of gold
Answer:
<em>Option A. It was delivered by comets that crashed into Earth's surface.</em>
Explanation:
<em><u>Uranium (U) is a chemical element with atomic number 92.</u></em>
<em />
<em>For many years, a large number of scientists have been studying the abundance and origin of the isotopes of uranium in Earth</em>. <u>According to some theories, the Earth's uranium was produced in one or more supernovae</u> (an explosive brightening of a star), in wich, the main process consists in the rapid capture of neutrons by seed nuclei at great rates. <u>Another theory proposes that uranium is created during the merger of two neutron stars</u> (neutron stars are very dense), because, when such dense bodies come closer together the gravitational force cause them to merge, producing huge amounts of hevy metals like uranium.
<u><em>Many analyses have been made of the uranium in rocks of the Earth. These measurements shows that the abundance of uranium is bigger in the crust and upper mantle of the Earth</em></u>.
So, knowing that Earth's uranium was produced through one of these processes, <u><em>the best answer is option A, the uranium was delivered by comets that crashed into Earth's surface.</em></u>
Have a nice day!
The correct answer among the choices is option C. The ion that is part of all nucleic acids is phosphoric acid. Nucleic acids are large biomolecules that is important for all life forms. DNA and RNA are nucleic acids. These biomolecules are made from monomers called nucleotides. Each monomer is composed of 5 carbon sugar, a nitrogeneous base and a phosphate group.
<h2>
Hey There!</h2><h2>
_____________________________________</h2><h2>
Answer:</h2>

<h2>_____________________________________</h2><h2>

</h2>
London Dispersion force or Van de waals force is a temporary attractive force which are the weakest and occur between nonpolar noble gases and same charges. This force is weaker because they have more electrons that are farther from the nucleus and are able to move around easier.
<h2>_____________________________________</h2><h2>

</h2>
Dipole force is present between the polar molecules. Polar molecules are those molecules which have slightly negative and slightly positive charge. Dipole-dipole forces are attractive forces between the positive end of one polar molecule and the negative end of another polar molecule.
<h2>_____________________________________</h2><h2>

</h2>
It is a special type of dipole force present between polar molecules, it is formed between Hydrogen atom which forms positive ion, and the other negative ion. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom. The hydrogen bond is one of the strongest intermolecular attractions, but weaker than a covalent or an ionic bond.
<h2>_____________________________________</h2><h2>Best Regards,</h2><h2>'Borz'</h2><h2 />
Answer:
A veinlike deposit, usually metalliferous.
Any body of ore set off from adjacent rock formations.
A rich supply or source