In step 1, to increase the potential energy, the iron will move towards the electromagnet.
In step 2, to increase the potential energy, the iron will move towards the electromagnet.
<h3>Potential energy of a system of magnetic dipole</h3>
The potential energy of a system of dipole depends on the orientation of the dipole in the magnetic field.

where;
is the dipole moment- B is the magnetic field


Increase in the distance (r) reduces the potential energy. Thus, we can conclude the following;
- In step 1, to increase the potential energy, the iron will move towards the electromagnet.
- In step 2, when the iron is rotated 180, it will still maintain the original position, to increase the potential energy, the iron will move towards the electromagnet.
Learn more about potential energy in magnetic field here: brainly.com/question/14383738
Answer:
Base-emitter and Base-collector junctions are forward biased
Answer:
the Restoring force causes the vibrating object to go slower going further from the equilibrium position and to go faster as it approaches the equilibrium position. the restoring force is what is causing the vibration The tension force comes from the string tugging on the bob of the pendulum.
Explanation:
<span>Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a10X (most common) eyepiece lens, we get total magnifications of 40X (4X times10X), 100X , 400X and 1000X.</span>