Answer:
a) The mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle is 23.6 cm².
Explanation:
a) The mass flow rate through the nozzle can be calculated with the following equation:

Where:
: is the initial velocity = 20 m/s
: is the inlet area of the nozzle = 60 cm²
: is the density of entrance = 2.21 kg/m³
Hence, the mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle can be found with the Continuity equation:



Therefore, the exit area of the nozzle is 23.6 cm².
I hope it helps you!
The equation that represents the principle of the lever balance is:
- W₁ + W₂ = W3 + W4; option A.
<h3>What is the principle of moments?</h3>
The principle of moments states when a body is in equilibrium, the sum of the clockwise moment about a point equals the sum of anticlockwise moment about that point.
A see-saw represents a balanced system of moments.
The sum of clockwise moment = The sum of anticlockwise moments.
Assuming W1 and W2 are clockwise moments and W3 and W4 are anticlockwise moments.
The equation will b: W₁ + W₂ = W3 + W4
In conclusion, a balanced see-saw illustrates the principle of the lever balance.
Learn more about principle of moments at: brainly.com/question/20519177
#SPJ1
<span>What I have here is exactly the same problem, however, with the time changed to 19 mins:
metabolic energy = metabolic power*time = 1.150*19*60 = 1.311 kJ..corresponding to 1.311/4.186 = 313,2 Cal or kcal
If we reasonably assume a metabolic eff.cy of 20%, it means we need to assume food for 1500 Cal approx.
Just plug the value t=15min to the equation and you will surely get the correct answer.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
The formula of the kinetic energy is:

where m is a mass of the object, v is speed of the object at the moment of time. So we have:

The answer is
2000 Joules.