Answer:
C. The lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, all of which have the same spin, in degenerate orbitals.
Explanation:
The Hund's rule is used to place the electrons in the orbitals is it states that:
1. Every orbital in a sublevel is singly occupied before any orbital is doubly occupied;
2. All of the electrons in singly occupied orbitals have the same spin.
So, the electrons first seek to fill the orbitals with the same energy (degenerate orbitals) before paring with electrons in a half-filled orbital. Orbitals doubly occupied have greater energy, so the lowest-energy electron configuration of an atom has the maximum number of unpaired electrons, and for the second statement, they have the same spin.
The other alternatives are correct, but they're not observed by the Hund's rule.
Answer:
percentage by mass of each element in a compound.
Explanation:
This one is the easiest law, but you would take 53 and 185 and add them together to get 235 and then you will minus 235 and 365 and the answer you are looking for is 130 mmHg! Hopefully this helped you!!
Answer: Hello i am confused are you asking a question?
Explanation: