4. describe three ways carbon dioxide was removed from the Earth's atmosphere.
Answer: Forests: Photosynthisis helps clear carbon dioxide naturally, Soils naturally store carbon, but agricultural soils are running a big deficit due to intensive use. Because agricultural land is so expansive, Bio-energy with Carbon Capture and Storage (BECCS) is another way to use photosynthesis to combat climate change. However, it is far more complicated than planting trees or managing soils — and it doesn’t always work for the climate.
5. Explain why there is now 21% Oxygen in the Earth's atomosphere compaired to little or no Oxygen in the Earth's atmosphere 4.5 billion years ago.
Answer: cientists believe that the Earth was formed about 4.5 billion years ago. Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence.The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. There were smaller proportions of water vapour, ammonia and methane. As the Earth cooled down, most of the water vapour condensed and formed the oceans.
Sorry its soooo long TwT
Answer:
diamond is denser because it is more tightly packed than coal
spindle fibers
i think the next is two nuclei and still together but that stage is not anaphase. Anaphase is when the sister chromatids are pulled apart
In general, solubility increases with temperature. When you increase the temperature of a solvent, you increase the kinetic energy (or energy of movement) of the molecules, and this greater energy helps dissolve more of the solute molecules.
The correct answer is higher melting point, bound by metal metal bonds.
While alkali metals only have one valence electron, alkaline earth metals have two. Metal to metal connections hold the metals together. Alkaline earth metals have a stronger metallic connection and a higher melting point because they have two valence electrons.
the characteristics that Group 2 metals excel in over Group 1 metals.
- Initial Ionization Potential
- Group 2 items are more difficult than group 1 elements.
- Strong propensity to produce bivalent compounds
As a result, group 2 metals have stronger metallic bonding, which leads to increased cohesive energy and compact atom packing. This explains why group 2 metals are harder and have higher melting and boiling temperatures than group 1 metals.
To learn more about Group 2A(2) refer the link:
brainly.com/question/9431096
#SPJ4