1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
12

Mars has a mass of about 6.58 × 1023 kg, and its moon Phobos has a mass of about 9.3 × 1015 kg. If the magnitude of the gravitat

ional force between the two bodies is 4.18 × 1015 N, how far apart are Mars and Phobos? The value of the universal gravitational constant is 6.673 × 10−11 N · m2 /kg2 . Answer in units of m.
Physics
1 answer:
NISA [10]3 years ago
5 0

This looks complicated, but it's actually not too tough.

The formula for the gravitational force between two objects is

              Force = G  (one mass) (other mass) / (distance²) .

The question GAVE us all of those numbers except the distance.
All we have to do is pluggum in, massage it around, and find
the distance. 

Force  =         4.18 x 10¹⁵     N
  G  =             6.673 x 10⁻¹¹  N·m²/kg²
One mass =   6.58 x 10²³     kg
Other mass = 9.3 x 10¹⁵       kg   .

The only tricky thing about this is gonna be the arithmetic ...
keeping all the exponents straight.

Take the formula for the gravitational force and plug in
everything we know:

Force = (G) · (one mass) · (other mass) / (distance²) 

4.18x10¹⁵N = (6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg) / (distance²).

Multiply each side by  (distance²):

(distance²)·(4.18x10¹⁵N) = (6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg) 

Divide each side by  (4.18 x 10¹⁵ N) :

(distance²)=(6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg) / (4.18x10¹⁵N)

That's the end of the Physics and Algebra.  The only thing left is Arithmetic.
We have to simplify that whole ugly thing on the right side of the equation,
and then take the square root of each side.

When I crunch down the right side of that equation, I get

           (distance²)  =  9.769 x 10¹³  m²

and when I take the square root of each side, I get

             distance  =  9.884 x 10⁶ meters .   **

You should check my Arithmetic.   **
(Pause occasionally to let your calculator cool off.)


BY THE WAY ... 
That "distance" in the equation for gravitational force is the distance
between the CENTERS of the two objects. 
This doesn't make much difference for Phobos, because Phobos isn't
much bigger than a big sweet potato.  But it does make a difference for
Mars. 
The 'distance' we find with all of this nonsense is NOT the distance
between Phobos and the surface of Mars.  It's the distance between 
Phobos and the CENTER of Mars, so it includes the planet's radius.   


** Consulting online resources between Floogle and Flickerpedia,
I found that the orbital distance of Phobos from Mars varies between
9,234 km and 9,517 km.  Add the planet's radius to these, and I'm
beginning to feel confidence in the results of my back-of-the-napkin
calculation.  But you should still check my Arithmetic.

You might be interested in
In 1780, in what is now referred to as "Brady's Leap," Captain Sam Brady of the U.S. Continental Army escaped certain death from
zysi [14]

The minimum speed with which Captain Brady had to run off the edge of the cliff to make it safely to the far side of the river is around 6 meters per second.

<h3>Further explanation</h3>

This is a free fall 2-dimensional type of problem, therefor we can write equations for both dimensions which model the fall of captain Brady. Let's call <em>x </em>the distance travelled by the captain on the horizontal direction and <em>y </em>the distance travelled on the vertical direction.

Lets suppose that Brady jumped with a complete horizontal velocity from a point which we will call the origin (meaning zero horizontal and vertical displacement), and let's call <em>ta</em> the time it took for captain Brady to reach the river (meaning the time he spent on the air). The equations of motion for the captain will be:

x= V \cdot t

y= - \frac{g \cdot t^2}{2}

We know that at time <em>ta</em> the captain would have traveled 6.7 m on the horizontal direction, and 6.1 m in the vertical direction. Therefor we can write that:

6.7= V \cdot ta

-6.1= - \frac{g \cdot {ta}^2}{2}

Which gives us a system of 2 equations and 2 unknowns (<em>V</em> and <em>ta</em>). From the second equation we can solve for <em>ta</em> as:

ta = \sqrt{\frac{2 \cdot 6.1}{g}} =1.12 s

And solving for <em>V</em> on the first equation, we find that:

V= \frac{6.7}{1.12} = 5.98 \frac{m}{s}

Which is almost 6 meters per second.

<h3>Learn more</h3>
  • Free fall of an arrow: brainly.com/question/1597396
  • Concept of free fall: brainly.com/question/1708231
<h3>Keywords</h3>

Free fall, projectile, gravity

7 0
3 years ago
Read 2 more answers
True or False. A material with randomly oriented atoms is magnetic.
Alexeev081 [22]

Answer:true

Explanation:

because atoms is what makes it able for things to be picked up

7 0
3 years ago
Read 2 more answers
A 4.0 kg object will have a weight of approximately 14.8 N on Mars. What is the gravitational field strength on Mars?
zhannawk [14.2K]
Field strength =force/unit mass
= 14.8N/ 4kg = 3.7N/kg
8 0
3 years ago
Read 2 more answers
Describe how to make a position-time graph.
salantis [7]

Answer:

There's a video called Drawing Position vs Time Graphs made by MrDGenova that may help you, it's only three minutes long.

Explanation:

Hope that helps, if not, you could tell me what you don't understand and I could try explaining it in further detail.

3 0
3 years ago
The bird that migrates the farthest is the Arctic tern. Each year, the Arctic tern travels
Tanzania [10]

Answer: 131.14km per day

Explanation: since the second half of the terns migration takes 122 days we can assume that the full migration would take 244 days. using this we can divide the total distance by the total amount of days it takes (because speed = distance/time) which is 32,000/244, which would be 131.14

8 0
3 years ago
Other questions:
  • A bicyclist of mass 88.0 kg puts all his weight on each downward-moving pedal as he pedals up a steep road. Take the diameter of
    14·1 answer
  • A tennis ball of mass m = 0.060 kg is traveling with a speed of 28 m/s and θ = 35 degrees. It strikes a wall and bounces off wit
    10·1 answer
  • Can I have help? please please please!
    8·2 answers
  • Jack and Jill ran up the hill at 2.8 m/s . The horizontal component of Jill's velocity vector was 2.1 m/s . What was the angle o
    11·1 answer
  • If multiple measurements are taken and they vary quite a bit from each other, the measurements are
    15·2 answers
  • The unit of the electric resistance is ???​
    6·1 answer
  • How are the heating systems similar and how are they different?
    12·1 answer
  • Information is in the photo
    10·1 answer
  • Why is it better to drive a large SUV in icy conditions with chains on the tires, instead of a small car with old tires? Explain
    13·1 answer
  • Uranium-235 Fission
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!