Answer:
<h2>
D.)</h2>
Explanation:
Potential energy is when a object is not in motion and the ball is sitting on a shelf not being thrown around or rolling. kinetic energy is when a obeject is in motion and moving.
<u>Gay Lussac’s law</u> state that the pressure and absolute temperature of a fixed quantity of a gas are directly proportional under constant volume conditions.
<h2>Further Explanation
</h2><h3>Gay-Lussac’s law </h3>
- It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
- Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Boyles’s law
</h3>
- This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
- Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
<h3>Charles’s law
</h3>
- It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
- Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law </h3>
- It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
- Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.
Keywords: Gas law, Gay-Lussac’s law, pressure, volume, absolute temperature, ideal gas
<h3>Learn more about:
</h3>
- Gay-Lussac’s law: brainly.com/question/2644981
- Charles’s law: brainly.com/question/5016068
- Boyles’s law: brainly.com/question/5016068
- Dalton’s law: brainly.com/question/6491675
Level: High school
Subject: Chemistry
Topic: Gas laws
Sub-topic: Gay-Lussac’s law
Acceleration = (change in speed) / (time for the change)
change in speed = (ending speed) - (starting speed)
change in speed = (10 m/s) - (2 m/s) = 8 m/s
Acceleration = (8 m/s) / (4 sec)
Acceleration = (8/4) (m/s²)
<em>Acceleration = 2 m/s²</em>
Can you explain this a bit more I don’t quite understand
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.