Answer:
The magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Explanation:
To find the resultant vector, you first calculate x and y components of the two vectors M and N. The components of the vectors are calculated by using cos and sin function.
For M vector you obtain:

For N vector:

The resultant vector is the sum of the components of M and N:

The magnitude of the resultant vector is:

And the direction of the vector is:

hence, the magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°
Answer:
Options A, B, and C are all possible.
Explanation:
We know that the instantaneous velocity of the dog at 3:14PM is possitive to toward the flowers. But what about the acceleration to toward the flowers?
If the dog is decreasing speed at 3:14PM, it means that acceleration is negative toward the flowers, hence (since F=ma) the net force points away from the flowers.
If the dog is increasing speed at 3:14PM, it means that acceleration is positive toward the flowers, hence (since F=ma) the net force points toward the flowers.
If the dog is not increasing nor decreasing speed at 3:14PM, it means that acceleration is 0, hence (since F=ma) the net force is null and it does not point neighter to toward the flowers nor away from the flowers. This happens when the forces acting on the dog are equal to both sides.
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that ball will reach at maximum height at
t = 3 s
now we will have

now we have


Now maximum height above ground is given as



Part b)
Height of the fence is given as



Part c)
As we know that its horizontal distance moved by the ball in 5.5 s is given as



now total time of flight is given as

so range is given as



so the distance from the fence is given as


<span>On the y-axis (the bottom of the table) hope this helps</span>