The minimum speed with which Captain Brady had to run off the edge of the cliff to make it safely to the far side of the river is around 6 meters per second.
<h3>Further explanation</h3>
This is a free fall 2-dimensional type of problem, therefor we can write equations for both dimensions which model the fall of captain Brady. Let's call <em>x </em>the distance travelled by the captain on the horizontal direction and <em>y </em>the distance travelled on the vertical direction.
Lets suppose that Brady jumped with a complete horizontal velocity from a point which we will call the origin (meaning zero horizontal and vertical displacement), and let's call <em>ta</em> the time it took for captain Brady to reach the river (meaning the time he spent on the air). The equations of motion for the captain will be:


We know that at time <em>ta</em> the captain would have traveled 6.7 m on the horizontal direction, and 6.1 m in the vertical direction. Therefor we can write that:


Which gives us a system of 2 equations and 2 unknowns (<em>V</em> and <em>ta</em>). From the second equation we can solve for <em>ta</em> as:

And solving for <em>V</em> on the first equation, we find that:

Which is almost 6 meters per second.
<h3>Learn more</h3>
<h3>Keywords</h3>
Free fall, projectile, gravity
Answer:true
Explanation:
because atoms is what makes it able for things to be picked up
Field strength =force/unit mass
= 14.8N/ 4kg = 3.7N/kg
Answer:
There's a video called Drawing Position vs Time Graphs made by MrDGenova that may help you, it's only three minutes long.
Explanation:
Hope that helps, if not, you could tell me what you don't understand and I could try explaining it in further detail.
Answer: 131.14km per day
Explanation: since the second half of the terns migration takes 122 days we can assume that the full migration would take 244 days. using this we can divide the total distance by the total amount of days it takes (because speed = distance/time) which is 32,000/244, which would be 131.14