1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
2 years ago
12

The half-life of cobalt-60 is 5.26 years. If 50 g are left after 15.8 years, how many

Physics
1 answer:
PtichkaEL [24]2 years ago
4 0

Answer:

400 g

Explanation:

The computation of the number of grams in the original sample is shown below:

Given that

half-life = 5.26 years

total time of decay = 15.8 years

final amount = 50.0 g

Now based on the above information  

number of half-lives past is

=  15.8 ÷ 5.26

= 3 half-lives

Now

3 half-lives = 1 ÷ 8 remains = 50.0 g

So, the number of grams would be

= 50.0 g × 8

= 400 g

You might be interested in
Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b
fenix001 [56]

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

8 0
3 years ago
Please answer this question brainliest ko promise
Paul [167]

Answer:

The language you typed into the bar is Filipinio and can be translated to "what sources of information do you have in your home and how can it help?"

The sources of information most people have in their home are Books, Encyclopedias, Magazines, Databases, Newspapers, Library Catalog, Internet. Hope this helped!

7 0
3 years ago
Henry slides across an icy pond. The coefficient of kinetic friction betweenhis shoes and the ice is 0.09. If his mass is 115 kg
Kruka [31]

Answer:

101 N

Explanation:

4 0
3 years ago
A freshly prepared sample of radioactive isotope has an activity of 10 mCi. After 4 hours, its activity is 8 mCi. Find: (a) the
Maurinko [17]

Answer:

(a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

Explanation:

Given that,

Activity R_{0}=10\ mCi

Time t_{1}=4\ hours

Activity R= 8 mCi

(a). We need to calculate the decay constant

Using formula of activity

R=R_{0}e^{-\lambda t}

\lambda=\dfrac{1}{t}ln(\dfrac{R_{0}}{R})

Put the value into the formula

\lambda=\dfrac{1}{4\times3600}ln(\dfrac{10}{8})

\lambda=0.0000154\ s^{-1}

\lambda=1.55\times10^{-5}\ s^{-1}

We need to calculate the half life

Using formula of half life

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{\lambda}

Put the value into the formula

T_{\dfrac{1}{2}}=\dfrac{ln(2)}{1.55\times10^{-5}}

T_{\dfrac{1}{2}}=44.719\times10^{3}\ s

T_{\dfrac{1}{2}}=11.3\ hr

(b). We need to calculate the value of N₀

Using formula of N_{0}

N_{0}=\dfrac{3.70\times10^{6}}{\lambda}

Put the value into the formula

N_{0}=\dfrac{3.70\times10^{6}}{1.55\times10^{-5}}

N_{0}=2.38\times10^{11}\ nuclei

(c). We need to calculate the sample's activity

Using formula of activity

R=R_{0}e^{-\lambda\times t}

Put the value intyo the formula

R=10e^{-(1.55\times10^{-5}\times30\times3600)}

R=1.87\ mCi

Hence, (a). The decay constant is 1.55\times10^{-5}\ s^{-1}

The half life is 11.3 hr.

(b). The value of N₀ is 2.38\times10^{11}\ nuclei

(c). The sample's activity is 1.87 mCi.

4 0
3 years ago
What is the thermal energy of an object?
nalin [4]
The answer would be A!
6 0
3 years ago
Read 2 more answers
Other questions:
  • Vector c has a magnitude 24.6 m and is in the direction of the negative y-axis. vectors a and b are at angles α = 41.4° and β
    12·1 answer
  • A car drives 215 km east and then 45 km north. What is the magnitude of the car’s displacement? Round your answer to the nearest
    5·2 answers
  • 4. State in words how acceleration is calculated.
    10·1 answer
  • Where must an object be placed to form an image 30.0 cm from a diverging lens with a focal length of 43.0 cm?
    6·1 answer
  • What are chlorofluorocarbons and what impact do they have on the atmosphere?
    8·1 answer
  • Total mechanical energy (The sum of kinetic and potential energy
    13·1 answer
  • What happens when calcium reacts with chlorine?
    15·1 answer
  • 750 kg car zooms away from a red light with an acceleration of 7.8 m/s squared . What is the average net force in Newtons that t
    5·1 answer
  • How much of the Moon is always illuminated one time? Explain your answer.
    11·1 answer
  • 1.14 Which of the following is an example of a force without touching? A A boy pushing a trolley. B The mass of a car. C с A mag
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!