Answer: you subtract the number of protons from the mass number, on the periodic table your atomic number is your protons and your atomic mass is the mass number
Explanation:
According to James-Lange theory of emotion, a stimulus first leads to bodily arousal, and this is followed by our interpretation of it as an emotion.
Complete question:
Two 10-cm-diameter charged rings face each other, 21.0 cm apart. Both rings are charged to +40.0 nC. What is the electric field strength at the midpoint between the two rings ?
Answer:
The electric field strength at the mid-point between the two rings is zero.
Explanation:
Given;
diameter of each ring, d = 10 cm = 0.1 m
distance between the rings, r = 21.0 cm = 0.21 m
charge of each ring, q = 40 nC = 40 x 10⁻⁹ C
let the midpoint between the two rings = x
The electric field strength at the midpoint between the two rings is given as;

Therefore, the electric field strength at the mid-point between the two rings is zero.
I don't like the wording of any of the choices on the list.
SONAR generates a short pulse of sound, like a 'peep' or a 'ping',
focused in one direction. If there's a solid object in that direction,
then some of the sound that hits it gets reflected back, toward the
source. The source listens to hear if any of the sound that it sent
out returns to it. If it hears its own 'ping' come back, it measures
the time it took for the sound to go out and come back. That tells
the SONAR equipment that there IS a solid object in that direction,
and also HOW FAR away it is.
RADAR works exactly the same way, except RADAR uses radio waves.