Answer:
The direction of the car’s change in linear momentum is 149.04° West of North
Explanation:
Momentum is defined as the product of mass of a body and its velocity
Momentum = mass × velocity
Change in Momentum = mass × change in velocity
∆P = m∆v
∆P = m(v-u)
Given m = 1500kg
v = 25m/s
u = 15m/s
∆P = 1500(25-15)
∆P = 1500×10
∆P = 15,000kgm/s
Since the car first travels due East i.e +x direction
x = 25m/s
Travelling due south is negative y direction
y = -15m/s
Direction of the car change
θ = tan^-1(y/x)
θ = tan^-1(-15/25)
θ = tan^-1(-0.6)
θ = -30.96°
Since tan is negative in the second quadrant
θ = 180-30.96
θ = 149.04°
The direction of the car’s change in linear momentum is 149.04° West of North
Hi!
The energy of the block is 4 m/s
To calculate this, you need to use the equation for
kinetic energy. The block is sliding (i.e. it's moving). If the object is sliding across a level surface, the only energy it has is kinetic energy, because
there is no change in potential energy (which changes with height). So, the mechanical energy will be pure kinetic energy. The equation is the following, derived from the expression for kinetic energy:

Have a nice day!
Answer:
In my opinion I think the answer is C you don't have to choose C
The crate is in equilibrium. Newton's second law gives
∑ <em>F</em> (vertical) = <em>n</em> - <em>mg</em> = 0
∑ <em>F</em> (horizontal) = <em>p</em> - <em>f</em> = 0
where
• <em>n</em> = magnitude of the normal force
• <em>mg</em> = weight of the crate
• <em>p</em> = mag. of push exerted by movers
• <em>f</em> = mag. of kinetic friciton, with <em>f</em> = 0.60<em>n</em>
<em />
It follows that
<em>p</em> = <em>f</em> = 0.60<em>mg</em> = 0.60 (43.0 kg) <em>g</em> = 252.84 N
so that the movers perform
<em>W</em> = <em>p</em> (10.4 m) ≈ 2600 J
of work on the crate. (The <em>total</em> work done on the crate, on the other hand, is zero because the net force on the crate is zero.)
Landforms pushing up mountains and hills. water and wind can wear down land and create valleys and canyons