1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
6

The frequency of a wave is 10 Hz. If the speed of the wave is 5 m/s, what is the wavelength? A. 0.5 m B. 2 m C. 10 m D. 50 m

Physics
1 answer:
Sladkaya [172]3 years ago
6 0
I'm pretty sure the answer is A. 0.5. Sorry if i'm wrong.
You might be interested in
Which wave must have a medium to travel?
o-na [289]

Letter B

without a medium, there is nothing to compress, hence, no wave. A fast- medium like a gas (air) is easy to compress and allows waves to move through it easily. a slow medium, like a liquid, is still pretty fast, but not as fast as air.

6 0
2 years ago
Read 2 more answers
When a sideways force acts on a moving object, what effect does it have?
My name is Ann [436]

Answer:

it makes the object speed increase, decrease and change the direction of the object.

Hope it helps!

6 0
3 years ago
In which part of the ear is the sound wave converted into electrical impulse
Kryger [21]
The part of the ear where the sound wave converted into electrical impulse would be the cochlea. This part is the  auditory portion of the inner ear which produces nerve impulses in response to sound vibrations. Hope this answers the question. Have a nice day.
3 0
3 years ago
Read 2 more answers
What is a free electron? Can someone help?
Aleksandr [31]
A free electron is one which has become detached from a covalent bond between two atoms and is able to move around from atom to atom and possibly take part in electric current flow.
3 0
3 years ago
A mortar is like a small cannon that launches shells at steep angles. A mortar crew is positioned near the top of a steep hill.
Elena-2011 [213]

1) Distance down the hill: 1752 ft (534 m)

2) Time of flight of the shell: 12.9 s

3) Final speed: 326.8 ft/s (99.6 m/s)

Explanation:

1)

The motion of the shell is a projectile motion, so we  can analyze separately its vertical motion and its horizontal motion.

The vertical motion of the shell is a uniformly accelerated motion, so the vertical position is given by the following equation:

y=(u sin \theta)t-\frac{1}{2}gt^2 (1)

where:

u sin \theta is the initial vertical velocity of the shell, with u=156 ft/s and \theta=49.0^{\circ}

g=32 ft/s^2 is the acceleration of gravity

At the same time, the horizontal motion of the shell is a uniform motion, so the horizontal position of the shell at time t is given by the equation

x=(ucos \theta)t

where u cos \theta is the initial horizontal velocity of the shell.

We can re-write this last equation as

t=\frac{x}{u cos \theta} (1b)

And substituting into (1),

y=xtan\theta -\frac{1}{2}gt^2 (2)

where we have choosen the top of the hill (starting position of the shell) as origin (0,0).

We also know that the hill goes down with a slope of \alpha=-41.0^{\circ} from the horizontal, so we can write the position (x,y) of the hill as

y=x tan \alpha (3)

Therefore, the shell hits the slope of the hill when they have same x and y coordinates, so when (2)=(3):

xtan\alpha = xtan \theta - \frac{1}{2}gt^2

Substituting (1b) into this equation,

xtan \alpha = x tan \theta - \frac{1}{2}g(\frac{x}{ucos \theta})^2\\x (tan \theta - tan \alpha)-\frac{g}{2u^2 cos^2 \theta} x^2=0\\x(tan \theta - tan \alpha-\frac{gx}{2u^2 cos^2 \theta})=0

Which has 2 solutions:

x = 0 (origin)

and

tan \theta - tan \alpha=\frac{gx}{2u^2 cos^2 \theta}=0\\x=(tan \theta - tan \alpha) \frac{2u^2 cos^2\theta}{g}=1322 ft

So, the distance d down the hill at which the shell strikes the hill is

d=\frac{x}{cos \alpha}=\frac{1322}{cos(-41.0^{\circ})}=1752 ft=534 m

2)

In order to find how long the mortar shell remain in the air, we can use the equation:

t=\frac{x}{u cos \theta}

where:

x = 1322 ft is the final position of the shell when it strikes the hill

u=156 ft/s is the initial velocity of the shell

\theta=49.0^{\circ} is the angle of projection of the shell

Substituting these values into the equation, we find the time of flight of the shell:

t=\frac{1322}{(156)(cos 49^{\circ})}=12.9 s

3)

In order to find the final speed of the shell, we have to compute its horizontal and vertical velocity first.

The horizontal component of the velocity is constant and it is

v_x = u cos \theta =(156)(cos 49^{\circ})=102.3 ft/s

Instead, the vertical component of the velocity is given by

v_y=usin \theta -gt

And substituting at t = 12.9 s (time at which the shell strikes the hill),

v_y=(156)(cos 49^{\circ})-(32)(12.9)=-310.4ft/s

Therefore, the  final speed of the shell is:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(102.3)^2+(-310.4)^2}=326.8 ft/s=99.6 m/s

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • What is the acceleration, in meters per second squared, of a 2,000,000-kilogram NASA rocket with an applied force of 20,000,000
    7·1 answer
  • Use the diagram to answer each question. 651-06-01-03-00_files/i0160000.jpg In phase E, from what direction is the sun shining?
    5·2 answers
  • A student uses an indicator to measure the pH of a solution. The indicator shows a pH of 7. What must be true of this solution?
    13·2 answers
  • How much force does it take to bring a 1,050 N car from rest to a velocity of 42 m/s in 13 seconds?
    14·1 answer
  • hich muscle fibers are best suited for activities that involve lifting large, heavy objects for a short period of time? cardiac
    11·1 answer
  • PLEASE HELP PLEASEE. Suppose the mass of a car is 1200 kg and the mass of the driver is 65 kg what is the total combined mass of
    14·1 answer
  • Before DNA was discovered, in which materials did scientists think the genetic material was stored?
    8·2 answers
  • A uniform sphere (I = 2/5 MR 2 ) rolls down an incline. (a) What must be the incline angle if the linear acceleration of the cen
    14·2 answers
  • A 1.35 kg block is pulled across a
    6·1 answer
  • A teacher wants to demonstrate that the radioactive source emits alpha beta and gamma radiation. Describe a method the teacher c
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!