1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Talja [164]
3 years ago
6

The frequency of a wave is 10 Hz. If the speed of the wave is 5 m/s, what is the wavelength? A. 0.5 m B. 2 m C. 10 m D. 50 m

Physics
1 answer:
Sladkaya [172]3 years ago
6 0
I'm pretty sure the answer is A. 0.5. Sorry if i'm wrong.
You might be interested in
An ice cube at 0c was dropped into 30.0 g of water in a cup at 45.0c. at the instant that all of the ice was melted, the tempera
Ede4ka [16]
The amount of heat given by the water to the block of ice can be calculated by using
Q=m_w C_{sw} \Delta T_w
where 
m_w = 30 g is the mass of the water
C_{sw}=4.18 J/(g ^{\circ}C) is the specific heat capacity of water
\Delta T_w = 45.0^{\circ}-19.5^{\circ}C = 20.5^{\circ}C is the variation of temperature of the water.

Using these numbers, we find
Q=(30 g)(4.18 J/(g^{\circ}C))(20.5^{\circ}C)=2571 J

This is the amount of heat released by the water, but this is exactly equal to the amount of heat absorbed by the ice, used to melt it into water according to the formula:
Q = m_i L_f
where m_i is the mass of the ice while L_f =334 J/g is the specific latent heat of fusion of the ice.
Re-arranging this formula and using the heat Q that we found previously, we can calculate the mass of the ice:
m_i =  \frac{Q}{L_f}= \frac{2571 J}{334 J/g} =7.7 g
3 0
2 years ago
A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 =
Liula [17]
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 
1)What is the force the left support exerts on the beam? 
2)What is the force the right support exerts on the beam? 
3)How much extra mass could the gymnast hold before the beam begins to tip? 
Now the gymnast (not holding any additional mass) walks directly above the right support. 

4)What is the force the left support exerts on the beam? 
5)What is the force the right support exerts on the beam?</span>
6 0
3 years ago
A car travels from point A to point B, moving in the same direction but with a non-constant speed. The first half of the distanc
Dmitrij [34]

Answer:

Explanation:

From A to B

distance traveled with velocity v_1  in time t_1

\frac{d}{2}=v_1t_1----1

from B to C

distance traveled is 0.5 d with v_2  and v_3  velocity for half-half time

\frac{d}{2}=\frac{v_2t_2}{2}+\frac{v_3t_3}{2}----2

divide 1 and 2 we get

\frac{1}{1}=\frac{2v_1t_1}{v_2t_2+v_3t_3}

\frac{t_1}{t_2}=\frac{v_2+v_3}{2v_1}

Now average velocity is given by

v_{avg}=\frac{d}{t_1+t_2}

taking t_1  common

v_{avg}=\frac{2v_1t_1}{t_1(1+\frac{t_2}{t_1})}

v_{avg}=\frac{2v_1}{1+\frac{2v_1}{v_2+v_3}}

v_{avg}=\frac{2v_1(v_2+v_3)}{2v_1+v_2+v_3}  

6 0
3 years ago
The magnitude of each force is 208 N the force on the right is applied at an angle 36° and the mass of the block is 17 kg the co
djyliett [7]

Answer:

<em>11.06m/s²</em>

Explanation:

According to Newtons second law of motion

\sm F_x = ma_x\\F_m - F_f = ma_x\\mgsin \theta - \mu R mgcos \theta = ma_x\\

Given

Mass m = 17kg

Fm = 208N

theta = 36 degrees

g = 9.8m/s²

a is the acceleration

Substitute

208 - 0.148(17)(9.8)cos 36 = 17a

208 - 24.6568cos36 = 17a

208 - 19.9478 = 17a

188.05 = 17a

a = 188.05/17

a = 11.06m/s²

<em>Hence the  the magnitude of the resulting acceleration is 11.06m/s²</em>

6 0
2 years ago
Three cars (car F, car G, and car H) are moving with the same velocity when the driver suddenly slams on the brakes, locking the
Nastasia [14]

Answer:

Car H

Explanation:

Frictional force is a resistant force. It is given as:

F = u*m*g

Where u = coefficient of friction

m = mass

g = acceleration due to gravity

From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.

Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.

The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.

So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.

5 0
2 years ago
Other questions:
  • Write at least name of five devices which work under the principles of Physics.
    12·1 answer
  • 7th grade science urgent! begging for help! if you have a voltage of 120 volts entering your house and a lightbulb with 0.75 amp
    11·1 answer
  • When the heart beats faster, blood vessels need to _____ more.<br> open <br> close move
    10·2 answers
  • Dizziness. Our balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid,
    15·1 answer
  • If this plastic cup is heated to its melting
    13·1 answer
  • State 3 properties of air<br>Try your best doesn't have to be all of them
    14·1 answer
  • Kim holds a pinwheel in the air and says it can be used to model a source of energy. Identify the type of energy Kim's pinwheel
    14·1 answer
  • If Jim is pushing a chair with 12N of force to the right while John is pushing with a force of 24N to the Left, what is the net
    8·1 answer
  • Match the correct center and scale factor to each figure.
    12·1 answer
  • You and ur 20 characters i just want an answer
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!