Impulse in physics is the integral of force, F, with respect with time, t. This value is a vector quantity since force is a vector quantity as well. It can be calculated from the product of force and time. We do as follows:
Impulse = Ft
= m(a)(t)
= m(v/t)t
= 0.046 (42/0.0005) (0.0005)
= 1.932 N-s
Answer:
unlike poles attract while liked poles repel
Explanation:
These two bar magnet will move away from each other
Answer:
I = 16amp
Explanation:
Charge coulomb ( Q ) = It
Where I =current in ampere
t = time = 5 seconds
80 = I × 5
I = 80/5
I = 16amp
The current through the circuit will be I = 16amp
Answer:
Work done = 13605.44
Explanation:
Data provided in the question:
For elongation of 2.1 cm (0.021 m) work done by the spring is 3.0 J
The relation between Energy (U) and the elongation (s) is given as:
U =
................(1)
where,
k is the spring constant
on substituting the valeus in the above equation, we get
3.0 = 
or
k = 13605.44 N/m
now
for the elongation x = 2.1 + 4.1 = 6.2 cm = 0.062 m
using the equation 1, we have
U = 
or
U = 26.149 J
Also,
Work done = change in energy
or
W = 26.149 - 3.0 = 23.149 J
Answer:
F = 2.49 x 10⁻⁹ N
Explanation:
The electrostatic force between two charged bodies is given by Colomb's Law:

where,
F = Electrostatic Force = ?
k = colomb's constant = 9 x 10⁹ N.m²/C²
q₁ = charge on proton = 1.6 x 10⁻¹⁹ C
q₂ = second charge = 1.4 C
r = distace between charges = 0.9 m
Therefore,

<u>F = 2.49 x 10⁻⁹ N</u>