Answer: 3 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum: during the collision between the two balls, the total momentum of the system before the collision and after the collision must be conserved:

The total momentum before the collision is given only by the cue ball, since the solid ball is initially at rest, therefore

So, the final total momentum will also be

And the total momentum after the collision is given only by the solid ball, since the cue ball is now at rest, therefore:

from which we find the velocity of the solid ball

Answer:
this measurement if feet is: 2.624672 ft
Explanation:
Notice that 80 cm can be expressed as 0.8 meters, and In order to convert from meters to feet, one needs to multiply the meter measurement times 3.28084. Therefore:
0.80 m can be written in feet as: 0.80 * 3.28084 feet = 2.624672 feet
The answer is decompression melting
Amplitude: the height of the wave<span>, measured in meters
</span><span>Wavelength: the distance between adjacent crests, measured in meters
</span>
Earth-like planet in another solar system
Hope this helps!!