Answer:
2500 J
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
Uf is the final internal energy of the system
Ui is the initial internal energy
Q is the heat added to the system
W is the work done by the system
In this problem, we have:
Q = +1000 J (heat that enters the system)
W = +500 J (work done by the system)
Ui = 2000 J (initial internal energy)
Using these numbers, we can re-arrange the equation to calculate the final internal energy:

Answer:
Wohhh thanks for you free answer. Well i will be appreciating it.
Answer:
There are two ways we may, one day, be able to time travel forwards.
You may have heard of Cryogenics. This is when someone who’s died is frozen instead of being buried or cremated. The theory is they can be “woken up” in the future when we have the technology to bring them back to life. Or a machine or device could be developed so that some people age more slowly than others around them. This way they’d live longer and see a future beyond the average person’s life span.
Another very different way of travelling into the future is more like what you’d see in science fiction. This is might involve travelling in a rocket or spaceship at a very high speed, close to the speed of light. “We can’t establish equality with the speed of light but it is possible, in theory, to travel nearly as fast as the speed of light,” adds Dr Steane.
So imagine you’re in a spaceship travelling very fast away from the Earth and you stay in orbit for a year. You would age at the same rate as if you were still on the Earth, by a year, but when you returned, the earth may have aged hundreds of years. “This is way beyond the technology we have at the moment,” he says. “But... in theory, it is possible.”
Explanation:
Hope this helped!
Answer:
6 m/s
Explanation:
mass of moving car m1=5000 kg
initial velocity of moving car vi1=?
mass of car at rest = m2=10000 kg
initial velocity of car at rest = vi2=0
final velcoities of both cars after collision = vf1=vf2= 2m/s
using conservation of momentum rule
m1vi1+m2vi2=m1vf1+m2vf2
putting values
==> 5000 × vi1 + 1000 × 0 = 5000 × 2 + 10000 × 2
==> 5000 ×vi1 = 2 × 15000
==> vi1 = 2 × 15000 ÷ 5000
==> vi1= 2×3=6 m/s